Iraqi Journal for Electrical and Electronic Engineering
Login
Iraqi Journal for Electrical and Electronic Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Proofreading Service
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Abstracting and indexing
    • Announcements
    • Contact

Search Results for induction-motor

Article
Direct Torque Control System for a Three Phase Induction Motor With Fuzzy Logic Based Speed Controller

Turki Y. Abdalla, Haroution Antranik Hairik, Adel M. Dakhil

Pages: 131-138

PDF Full Text
Abstract

This paper presents a method for improving the speed profile of a three phase induction motor in direct torque control (DTC) drive system using a proposed fuzzy logic based speed controller. A complete simulation of the conventional DTC and closed-loop for speed control of three phase induction motor was tested using well known Matlab/Simulink software package. The speed control of the induction motor is done by using the conventional proportional integral (PI) controller and the proposed fuzzy logic based controller. The proposed fuzzy logic controller has a nature of (PI) to determine the torque reference for the motor. The dynamic response has been clearly tested for both conventional and the proposed fuzzy logic based speed controllers. The simulation results showed a better dynamic performance of the induction motor when using the proposed fuzzy logic based speed controller compared with the conventional type with a fixed (PI) controller.

Article
Dynamic Model of Linear Induction Motor Considering the End Effects

Dr. Haroutuon A. Hairik, Mohammed H. Hassan

Pages: 38-50

PDF Full Text
Abstract

In this paper the dynamic behavior of linear induction motor is described by a mathematical model taking into account the end effects and the core losses. The need for such a model rises due to the complexity of linear induction motors electromagnetic field theory. The end affects are modeled by introducing a speed dependent scale factor to the magnetizing inductance and series resistance in the d-axis equivalent circuit. Simulation results are presented to show the validity of the model during both no-load and sudden load change intervals. This model can also be used directly in simulation researches for linear induction motor vector control drive systems.

Article
Bifurcations and Chaos in Current-Driven Induction Motor

Fatma N. Ayoob, Fadhil R. Tahir, Khalid M. Abdul-Hassan

Pages: 1-9

PDF Full Text
Abstract

In this paper, a model of PI-speed control current-driven induction motor based on indirect field oriented control (IFOC) is addressed. To assess the complex dynamics of a system, different dynamical properties, such as stability of equilibrium points, bifurcation diagrams, Lyapunov exponents spectrum, and phase portraits are characterized. It is found that the induction motor model exhibits chaotic behaviors when its parameters fall into a certain region. Small variations of PI parameters and load torque affect the dynamics and stability of this electric machine. A chaotic attractor has been observed and the speed of the motor oscillates chaotically. Numerical simulation results are validating the theoretical analysis.

Article
Bifurcation and Chaos from DTC Induction Motor Drive System

Ahmed Sadeq Hunaish, Fadhil Rahma Tahir

Pages: 49-53

PDF Full Text
Abstract

In this paper, three phase induction motor (IM) has been modelled in stationary reference frame and controlled by using direct torque control (DTC) method with constant V/F ratio. The obtained drive system consists of nine nonlinear first order differential equations. The numerical analysis is used to investigate the system behavior due to control parameter change. The integral gain of speed loop is used as bifurcation parameter to test the system dynamics. The simulation results show that the system has period-doubling route to chaos, period-1, period-2, period-4, and then the system gets chaotic oscillation. A specific value of the parameter range shows that the system has very strong randomness and a high degree of disturbance

Article
Combined Sliding Mode Control with a Feedback Linearization for Speed Control of Induction Motor

Aamir Hashim Obeid Ahmed, Martino O. Ajangnay, Shamboul A. Mohamed, Matthew W. Dunnigan

Pages: 19-24

PDF Full Text
Abstract

Induction Motor (IM) speed control is an area of research that has been in prominence for some time now. In this paper, a nonlinear controller is presented for IM drives. The nonlinear controller is designed based on input-output feedback linearization control technique, combined with sliding mode control (SMC) to obtain a robust, fast and precise control of IM speed. The input-output feedback linearization control decouples the flux control from the speed control and makes the synthesis of linear controllers possible. To validate the performances of the proposed control scheme, we provided a series of simulation results and a comparative study between the performances of the proposed control strategy and those of the feedback linearization control (FLC) schemes. Simulation results show that the proposed control strategy scheme shows better performance than the FLC strategy in the face of system parameters variation.

Article
A new Technique for Position Control of Induction Motor Using Adaptive Inverse Control

Aamir Hashim Obeid Ahmed, Martino O. Ajangnay, Shamboul A. Mohamed, Matthew W. Dunnigan

Pages: 116-122

PDF Full Text
Abstract

Control of Induction Motor (IM) is well known to be difficult owing to the fact the models of IM are highly nonlinear and time variant. In this paper, to achieve accurate control performance of rotor position control of IM, a new method is proposed by using adaptive inverse control (AIC) technique. In recent years, AIC is a very vivid field because of its advantages. It is quite different from the traditional control. AIC is actually an open loop control scheme and so in the AIC the instability problem cased by feedback control is avoided and the better dynamic performances can also be achieved. The model of IM is identified using adaptive filter as well as the inverse model of the IM, which was used as a controller. The significant of using the inverse of the IM dynamic as a controller is to makes the IM output response to converge to the reference input signal. To validate the performances of the proposed new control scheme, we provided a series of simulation results.

Article
Speed Control of Induction Motor Using New Sliding Mode Control Technique

Aamir Hashim Obeid Ahmed, Martino O. Ajangnay, Shamboul A. Mohamed, Matthew W. Dunnigan

Pages: 111-115

PDF Full Text
Abstract

Induction Motors have been used as the workhorse in the industry for a long time due to its easy build, high robustness, and generally satisfactory efficiency. However, they are significantly more difficult to control than DC motors. One of the problems which might cause unsuccessful attempts for designing a proper controller would be the time varying nature of parameters and variables which might be changed while working with the motion systems. One of the best suggested solutions to solve this problem would be the use of Sliding Mode Control (SMC). This paper presents the design of a new controller for a vector control induction motor drive that employs an outer loop speed controller using SMC. Several tests were performed to evaluate the performance of the new controller method, and two other sliding mode controller techniques. From the comparative simulation results, one can conclude that the new controller law provides high performance dynamic characteristics and is robust with regard to plant parameter variations.

Article
PLC/HMI Based Portable Workbench for PLC and Digital Logic Learning and Application Development

Jawad Radhi Mahmood, Ramzy Salim Ali

Pages: 83-96

PDF Full Text
Abstract

A Programmable logic controller (PLC) uses the digital logic circuits and their operating concepts in its hardware structure and its programming instructions and algorithms. Therefore, the deep understanding of these two items is staple for the development of control applications using the PLC. This target is only possible through the practical sensing of the various components or instructions of these two items and their applications. In this work, a user-friendly and re-configurable ladder, digital logic learning and application development design and testing platform has been designed and implemented using a Programmable Logic Controller (PLC), Human Machine Interface panel (HMI), four magnetic contactors, one Single-phase power line controller and one Variable Frequency Drive (VFD) unit. The PLC role is to implement the ladder and digital logic functions. The HMI role is to establish the virtual circuit wiring and also to drive and monitor the developed application in real time mode of application. The magnetic contactors are to play the role of industrial field actuators or to link the developed application control circuit to another field actuator like three phase induction motor. The Single -phase power line controller is to support an application like that of the soft starter. The VFD is to support induction motor driven applications like that of cut-to-length process in which steel coils are uncoiled and passed through cutting blade to be cut into required lengths. The proposed platform has been tested through the development of 14 application examples. The test results proved the validity of the proposed platform.

Article
Minimization of Torque Ripple in DTC of Induction Motor Using Fuzzy Mode Duty Cycle Controller

Turki Y. Abdalla, Haroution Antranik Hairik, Adel M. Dakhil

Pages: 42-49

PDF Full Text
Abstract

Among all control methods for induction motor drives, Direct Torque Control (DTC) seems to be particularly interesting being independent of machine rotor parameters and requiring no speed or position sensors. The DTC scheme is characterized by the absence of PI regulators, coordinate transformations, current regulators and PWM signals generators. In spite of its simplicity, DTC allows a good torque control in steady state and transient operating conditions to be obtained. However, the presence of hysterics controllers for flux and torque could determine torque and current ripple and variable switching frequency operation for the voltage source inverter. This paper is aimed to analyze DTC principles, and the problems related to its implementation, especially the torque ripple and the possible improvements to reduce this torque ripple by using a proposed fuzzy based duty cycle controller. The effectiveness of the duty ratio method was verified by simulation using Matlab/Simulink software package. The results are compared with that of the traditional DTC models.

Article
Modeling and Simulation of Five-Phase Synchronous Reluctance Motor Fed by Five-Phase Inverter

Namariq Abdulameer Ameen, Ali Kadhim Abdulabbas, Habeeb Jaber Nekad

Pages: 58-65

PDF Full Text
Abstract

Five-phase machine employment in electric drive system is expanding rapidly in many applications due to several advantages that they present when compared with their three-phase complements. Synchronous reluctance machines(SynRM) are considered as a proposed alternative to permanent magnet machine in the automotive industry because the volatilities in the permanent magnet price, and a proposed alternative for induction motor because they have no field excitation windings in the rotor, SyRM rely on high reluctance torque thus no needing for magnetic material in the structure of rotor. This paper presents dynamic simulation of five phase synchronous reluctance motor fed by five phase voltage source inverter based on mathematical modeling. Sinusoidal pulse width modulation (SPWM) technique is used to generate the pulses for inverter. The theory of reference frame has been used to transform five-phase SynRM voltage equations for simplicity and in order to eliminate the angular dependency of the inductances. The torque in terms of phase currents is then attained using the known magnetic co-energy method, then the results obtained are typical.

Article
An Experimental Investigation on VSI-fed Induction Motor using Xilinx ZYNQ-7000 SoC Controller

Santosh Yadav Maddu, Nitin Ramesh Bhasme

Pages: 104-114

PDF Full Text
Abstract

In medium voltage and high-power drive applications, pulse width modulation (PWM) techniques are widely used to achieve effective speed control of AC motors. In real-time, an industrial drive system requires reduced hardware complexity and low computation time. The reliability of the AC drive can be improved with the FPGA (field programmable gate array) hardware equipped with digital controllers. To improve the performance of AC drives, a new FPGA-based Wavect real-time prototype controller (Xilinx ZYNQ-7000 SoC) is used to verify the effectiveness of the controller. These advanced controllers are capable of reducing computation time and enhancing the drive performance in real- time applications. The comparative performance analysis is carried out for the most commonly used voltage source inverter (VSI)-based PWM techniques such as sinusoidal pulse width modulation (SPWM) and space vector pulse width modulation (SVPWM) for three-phase, two-level inverters. The comparative study shows the SVPWM technique utilizes DC bus voltage more effectively and produces less harmonic distortion in terms of higher output voltage, flexible control of output frequency, and reduced harmonic distortion at output voltage for motor control applications. The simulation and hardware results are verified and validated by using MATLAB/Simulink software and FPGA-based Wavect real-time controller respectively.

Article
Liquid Mixing Enhancement by PLC-Based Chaotic Dynamics Implementation

Hamzah Abdulkareem, Fadhil Rahma, Jawad Radhi

Pages: 10-20

PDF Full Text
Abstract

In this paper, we present a new programmable chaotic circuit based on the dynamical chaotic system introduced by E. Lorenz. The design and realization of the model are accomplished by using a programmable logic controller (PLC). The system can be modeled and realized with a structured texted. The nonlinear differential equations of Lorenz model are solved numerically. The generated chaotic signal by using PLC is applied to a single- phase induction motor via a variable frequency drive to create a chaotic perturbation in the experiments of liquid mixing. Colorization liquid experiments shows that the generated chaotic motion effectively makes an enhancement of the mixing process in the stirred-tank mixer model in our laboratory.

1 - 12 of 12 items

Search Parameters

Journal Logo
Iraqi Journal for Electrical and Electronic Engineering

College of Engineering, University of Basrah

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

Copyright © 2025 College of Engineering, University of Basrah. All rights reserved, including those for text and data mining, AI training, and similar technologies.