Iraqi Journal for Electrical and Electronic Engineering
Login
Iraqi Journal for Electrical and Electronic Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Proofreading Service
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Abstracting and indexing
    • Announcements
    • Contact

Search Results for image-segmentation

Article
A Comprehensive Review of Image Segmentation Techniques

Salwa Khalid Abdulateef, Mohanad Dawood Salman

Pages: 166-175

PDF Full Text
Abstract

Image segmentation is a wide research topic; a huge amount of research has been performed in this context. Image segmentation is a crucial procedure for most object detection, image recognition, feature extraction, and classification tasks depend on the quality of the segmentation process. Image segmentation is the dividing of a specific image into a numeral of homogeneous segments; therefore, the representation of an image into simple and easy forms increases the effectiveness of pattern recognition. The effectiveness of approaches varies according to the conditions of objects arrangement, lighting, shadow and other factors. However, there is no generic approach for successfully segmenting all images, where some approaches have been proven to be more effective than others. The major goal of this study is to provide summarize of the disadvantages and the advantages of each of the reviewed approaches of image segmentation.

Article
A Survey on Segmentation Techniques for Image Processing

Wala’a N. Jasim, Rana Jassim Mohammed

Pages: 73-93

PDF Full Text
Abstract

The segmentation methods for image processing are studied in the presented work. Image segmentation can be defined as a vital step in digital image processing. Also, it is used in various applications including object co-segmentation, recognition tasks, medical imaging, content based image retrieval, object detection, machine vision and video surveillance. A lot of approaches were created for image segmentation. In addition, the main goal of segmentation is to facilitate and alter the image representation into something which is more important and simply to be analyzed. The approaches of image segmentation are splitting the images into a few parts on the basis of image’s features including texture, color, pixel intensity value and so on. With regard to the presented study, many approaches of image segmentation are reviewed and discussed. The techniques of segmentation might be categorized into six classes: First, thresholding segmentation techniques such as global thresholding (iterative thresholding, minimum error thresholding, otsu's, optimal thresholding, histogram concave analysis and entropy based thresholding), local thresholding (Sauvola’s approach, T.R Singh’s approach, Niblack’s approaches, Bernsen’s approach Bruckstein’s and Yanowitz method and Local Adaptive Automatic Binarization) and dynamic thresholding. Second, edge-based segmentation techniques such as gray-histogram technique, gradient based approach (laplacian of gaussian, differential coefficient approach, canny approach, prewitt approach, Roberts approach and sobel approach). Thirdly, region based segmentation approaches including Region growing techniques (seeded region growing (SRG), statistical region growing, unseeded region growing (UsRG)), also merging and region splitting approaches. Fourthly, clustering approaches, including soft clustering (fuzzy C-means clustering (FCM)) and hard clustering (K-means clustering). Fifth, deep neural network techniques such as convolution neural network, recurrent neural networks (RNNs), encoder-decoder and Auto encoder models and support vector machine. Finally, hybrid techniques such as evolutionary approaches, fuzzy logic and swarm intelligent (PSO and ABC techniques) and discusses the pros and cons of each method.

Article
Internet of Things Based Oil Pipeline Spill Detection System Using Deep Learning and LAB Colour Algorithm

Muhammad H. Obaid, Ali H. Hamad

Pages: 137-148

PDF Full Text
Abstract

Given the role that pipelines play in transporting crude oil, which is considered the basis of the global economy and across different environments, hundreds of studies revolve around providing the necessary protection for it. Various technologies have been employed in this pursuit, differing in terms of cost, reliability, and efficiency, among other factors. Computer vision has emerged as a prominent technique in this field, albeit requiring a robust image-processing algorithm for spill detection. This study employs image segmentation techniques to enable the computer to interpret visual information and images effectively. The research focuses on detecting spills in oil pipes caused by leakage, utilizing images captured by a drone equipped with a Raspberry Pi and Pi camera. These images, along with their global positioning system (GPS) location, are transmitted to the base station using the message queuing telemetry transport Internet of Things (MQTT IoT) protocol. At the base station, deep learning techniques, specifically Holistically-Nested Edge Detection (HED) and extreme inception (Xception) networks, are employed for image processing to identify contours. The proposed algorithm can detect multiple contours in the images. To pinpoint a contour with a black color, representative of an oil spill, the CIELAB color space (LAB) algorithm effectively removes shadow effects. If a contour is detected, its area and perimeter are calculated to determine whether it exceeds a certain threshold. The effectiveness of the proposed system was tested on Iraqi oil pipeline systems, demonstrating its capability to detect spills of different sizes.

1 - 3 of 3 items

Search Parameters

Journal Logo
Iraqi Journal for Electrical and Electronic Engineering

College of Engineering, University of Basrah

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

Copyright © 2025 College of Engineering, University of Basrah. All rights reserved, including those for text and data mining, AI training, and similar technologies.