Iraqi Journal for Electrical and Electronic Engineering
Login
Iraqi Journal for Electrical and Electronic Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Proofreading Service
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Abstracting and indexing
    • Announcements
    • Contact

Search Results for hog

Article
Interactive Real-Time Control System for The Artificial Hand

Hanadi Abbas Jaber, Mofeed Turky Rashid, Luigi Fortuna

Pages: 62-71

PDF Full Text
Abstract

In recent years, the number of researches in the field of artificial limbs has increased significantly in order to improve the performance of the use of these limbs by amputees. During this period, High-Density surface Electromyography (HD-sEMG) signals have been employed for hand gesture identification, in which the performance of the classification process can be improved by using robust spatial features extracted from HD-sEMG signals. In this paper, several algorithms of spatial feature extraction have been proposed to increase the accuracy of the SVM classifier, while the histogram oriented gradient (HOG) has been used to achieve this mission. So, several feature sets have been extracted from HD-sEMG signals such as; features extracted based on HOG denoted by (H); features have been generated by combine intensity feature with H features denoted as (HI); features have been generated by combine average intensity with H features denoted as (AIH). The proposed system has been simulated by MATLAB to calculate the accuracy of the classification process, in addition, the proposed system is practically validated in order to show the ability to use this system by amputees. The results show the high accuracy of the classifier in real-time which leads to an increase in the possibility of using this system as an artificial hand.

Article
Face Recognition-Based Automatic Attendance System in a Smart Classroom

Ahmad S. Lateef, Mohammed Y. Kamil

Pages: 37-47

PDF Full Text
Abstract

The smart classroom is a fully automated classroom where repetitive tasks, including attendance registration, are automatically performed. Due to recent advances in artificial intelligence, traditional attendance registration methods have become challenging. These methods require significant time and effort to complete the process. Therefore, researchers have sought alternative ways to accomplish attendance registration. These methods include identification cards, radio frequency, or biometric systems. However, all of these methods have faced challenges in safety, accuracy, effort, time, and cost. The development of digital image processing techniques, specifically face recognition technology, has enabled automated attendance registration. Face recognition technology is considered the most suitable for this process due to its ability to recognize multiple faces simultaneously. This study developed an integrated attendance registration system based on the YOLOv7 algorithm, which extracts features and recognizes students’ faces using a specially collected database of 31 students from Mustansiriyah University. A comparative study was conducted by applying the YOLOv7 algorithm, a machine learning algorithm, and a combined machine learning and deep learning algorithm. The proposed method achieved an accuracy of up to 100%. A comparison with previous studies demonstrated that the proposed method is promising and reliable for automating attendance registration.

1 - 2 of 2 items

Search Parameters

Journal Logo
Iraqi Journal for Electrical and Electronic Engineering

College of Engineering, University of Basrah

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

Copyright © 2025 College of Engineering, University of Basrah. All rights reserved, including those for text and data mining, AI training, and similar technologies.