Preserving privacy and security plays a key role in allowing each component in the healthcare system to access control and gain privileges for services and resources. Over recent years, there have been several role-based access control and authentication schemes, but we noticed some drawbacks in target schemes such as failing to resist well-known attacks, leaking privacy-related information, and operational cost. To defeat the weakness, this paper proposes a secure electronic healthcare record scheme based on Schnorr Signcryption, crypto hash function, and Distributed Global Database (DGDB) for the healthcare system. Based on security theories and the Canetti-Krawczyk model (CK), we notice that the proposed scheme has suitable matrices such as scalability, privacy preservation, and mutual authentication. Furthermore, findings from comparisons with comparable schemes reveal that the suggested approach provides greater privacy and security characteristics than the other schemes and has enough efficiency in computational and communicational aspects.
Experts and researchers in the field of information security have placed a high value on the security of image data in the last few years. They have presented several image encryption techniques that are more secure. To increase the security level of image encryption algorithms, this article offers an efficient diffusion approach for image encryption methods based on one- dimensional Logistic, three-dimensional Lorenz, DNA encoding and computing, and SHA-256. The encryption test demonstrates that the method has great security and reliability. This article, also, examines the security of encryption methods, such as secret key space analysis, key sensitivity test, histogram analysis, information entropy process, correlation examination, and differential attack. When the image encryption method described in this article is compared to several previous image encryption techniques, the encryption algorithm has higher information entropy and a lower correlation coefficient.
Recently, the incorporation of state-of-the-art technology such as Electronic Healthcare Records (EHRs), networks, and cloud computing has transformed the traditional healthcare system. However, security problems have arisen as a result of the integration of technology. Secure remote user authentication is a core part of the healthcare system to validate the user's identification via an unsecure communication network. Since then, several remote user authentication schemes have been presented, each with its own set of pros and limitations. As a result, security, malicious attacks and privacy concerns are considered one of the main challenges related to the healthcare system. In this paper, we propose a safe user authentication scheme for patients in the healthcare system that overcomes these flaws and confirms the security of the proposed work using scyther, a formal security tool. In the healthcare environment, our work provides an effective means to construct an environment capable of setting, registering, storing, searching, analyzing, authentication, and verifying electronic healthcare information in order to protect the information of patients. Furthermore, our suggested scheme uses symmetric encryption based on the crypto- hash function for accessing the anomaly of the patient's identity and One-Time Password (OTP). Towards the end of the study, the performance analysis results indicate a delicate balance of security and performance that is frequently lacking in previous works.