Iraqi Journal for Electrical and Electronic Engineering
Login
Iraqi Journal for Electrical and Electronic Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Proofreading Service
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Abstracting and indexing
    • Announcements
    • Contact

Search Results for harmonics

Article
Control Strategy for Three-Phase PWM Boost Rectifier Operating Under Different Supply Voltage Conditions

Turki Kahawish Hassan, Muntadher Kadhem Abdullah

Pages: 83-100

PDF Full Text
Abstract

In this paper, a proposed control strategy is presented to improve the performance of the pulse width modulation (PWM) boost type rectifier when operating under different supply voltage conditions (balanced, unbalanced, and distorted three-phase supply voltages). The proposed control strategy is divided into two parts, the first part is voltage controller and the second part is current controller. In the voltage controller, Repetitive Controller (RC) is used to reduce the even order harmonics in the regulated output dc voltage so small output capacitor (filter) is used instead of large capacitor. RC also reduces the even order harmonics which appear in the reflected dc current (I MAX ), this leads to reduce the odd order harmonics which appear in the input currents. While in the current controller, Enhanced Phase Locked Loop (EPLL) technique is used to obtain sinusoidal and balanced three phases, to construct the reference currents, which are in phase with the fundamental supply voltages. Therefore, the supply-side power factor is kept close to unity. A proportional controller is used to give excellent tracking between the line and the reference currents. The complete system with the proposed control strategy are simulated using Matlab/Simulink. The results for the complete system using repetitive voltage controller are obtained and compared to the results of the system with the conventional voltage controller (Proportional-Integral (PI) controller connected in series with a Low Pass Filter (LPF)). The results with the repetitive controller show better response and stable operation in the steady state under different input voltage conditions, as well as in the transient response under changing the load condition. — Enhanced Phase Locked Loop,Repetitive Controller,Three-Phase PWM Boost Rectifier, Proportional-Integral controller. I. INTRODUCTION The boost type PWM rectifier has been increasingly employed in recent years since it offers the possibility of a low distortion line current withnear unity power factor for any load condition. Another advantage over traditional phase-controlled thyristor rectifiers is its capability for nearly instantaneous reversal of power flow. Unfortunately, the features of the PWM boost type rectifier are fully realized only when the supply three phase input voltages are balanced. It has been shown that unbalanced input voltages cause an abnormal second order harmonic at the dc output voltage, which reflects back to the input causing third-order harmonic current to flow. Next, the third-order harmonic current causes a fourth-order harmonic voltage on the dc bus, and so on. This results in the appearance of even harmonics at the dc output and odd harmonics in the input currents. An attempt was made to reduce low order harmonics at the input and the output of the PWM Boost Type Rectifier under unbalance input voltages [1]. The authors in [2] used two synchronous reference frames: a positive- sequence current regulated by a

Article
Voltage Sag, Voltage Swell and Harmonics Reduction Using Unified Power Quality Conditioner (UPQC) Under Nonlinear Loads

Ahmed Yahyia Qasim, Fadhil Rahma Tahir, Ahmed Nasser B. Alsammak

Pages: 140-150

PDF Full Text
Abstract

In light of the widespread usage of power electronics devices, power quality (PQ) has become an increasingly essential factor. Due to nonlinear characteristics, the power electronic devices produce harmonics and consume lag current from the utility. The UPQC is a device that compensates for harmonics and reactive power while also reducing problems related to voltage and current. In this work, a three-phase, three-wire UPQC is suggested to reduce voltage-sag, voltage-swell, voltage and current harmonics. The UPQC is composed of shunt and series Active Power Filters (APFs) that are controlled utilizing the Unit Vector Template Generation (UVTG) technique. Under nonlinear loads, the suggested UPQC system can be improved PQ at the point of common coupling (PCC) in power distribution networks. The simulation results show that UPQC reduces the effect of supply voltage changes and harmonic currents on the power line under nonlinear loads, where the Total Harmonic Distortion (THD) of load voltages and source currents obtained are less than 5%, according to the IEEE-519 standard.

Article
Performance Analysis of Three-Phase Active Power Filter with Switched Mode Inverter

Mustafa M. Ibrahem, Jabbar R. Rashed

Pages: 76-92

PDF Full Text
Abstract

This paper presents a simplified control method for three-phase active power filter by calculating the required reactive and harmonics current of the load. The active power filter needs this current to correct the power factor and eliminate the generated harmonics by nonlinear loads. This method has the advantages of using only one current sensor and effectiveness in achieving the required compensation characteristics. The proposed circuit may be operate at frequencies ranging from 40 to 60 Hz, and it also responds very fast under sudden changes in the load conditions. The considered system is analyzed and a prototype is also developed and tested to demonstrate the performance of the implemented active power filter in the power factor improvement and harmonics elimination. Finally, predicted results are verified experimentally.

Article
Design a Power System of 1760W Based on a Twin Inverter and a Fuzzy Logic Controller

Samhar Saeed Shukir

Pages: 68-76

PDF Full Text
Abstract

The increasing demand for electricity due to population expansion has led to frequent interruptions in electrical power, so there are backup power lines everywhere, especially in the sectors of education, health, banking, transportation and communications. DC sources are beginning to become widely spread in terms of low maintenance requirements, no need for refueling, and no pollutant emission in these institutions. The problems of DC systems are; losses in DC system components, and change in output voltage as loads change. This research presents a power system that generates 1760W AC power from batteries bank, the system consists of a twin inverter to reduce losses in switches and filters, and thus improving the efficiency and the power factor of the system, and fuzzy logic controllers to regulate the output voltage of the converter and inverter. Modeling and simulation in MATLAB / Simulink showed obtaining a constant load voltage with acceptable values of total harmonics distortion (THD) under different conditions of loads and batteries.

Article
Design of 7-Level Hybrid Inverter Control Circuit

Rabee Hashim Thejel

Pages: 62-69

PDF Full Text
Abstract

Use of multilevel inverters is becoming popular in the recent years for high power applications. The important feature of these inverters is of having low harmonics content in the output voltage. The switching angles in a multilevel inverter are computed so as to produce an ac output voltage with minimum harmonics. A new control circuit is designed to achieve these angles. This control circuit has the ability to control the RMS output voltage using sinusoidal pulse width modulation (SPWM). The results presented in this work prove the ability of the designed control circuit to gain the required ac output voltage with minimum distortion.

Article
Phase Shift Modulation Strategy for Single Stage AC to DC Dual Active Bridge Converter

Maha Faiz Ahmed, Mohamad N. Abdul Kadir

Pages: 170-179

PDF Full Text
Abstract

Energy exchange between AC grid and DC supply that is a part of a hybrid electric micro-grid takes place using various power converter designs. The single-phase, single-stage, AC-DC power dual active bridge converter is one option. The phase-shift modulation is used to regulate energy flow in both directions. The topology of one stage AC-DC dual active bridge converter based in bidirectional switching modules has been introduced. This paper next introduces the analysis of the AC side current considering basic modulation functions and suggests an optimum phase-shifted modulation strategy. The proposed modulation function provides minimum harmonics distortion. A simulation study is presented to compare the proposed strategy to the basic sinusoidal and triangular modulation techniques. The results show that the modified modulation reduces the average THD by about 55% and 39% compared to the standard sinusoidal and triangular modulation strategies respectively and ensures linear relationship between the transferred power and magnitude control coefficient.

Article
Ant Colony Algorithm (ACO) Applied for Tuning PI of Shunt Active Power Filter (SAPF)

Raheel Jawad, Rawaa Jawad, Zahraa Salman

Pages: 204-211

PDF Full Text
Abstract

In the present-day decade, the world has regarded an expansion in the use of non-linear loads. These a lot draw harmonic non- sinusoidal currents and voltages in the connection factor with the utility and distribute them with the useful resource of the overall performance of it. The propagation of these currents and voltages into the grids have an effect on the electricity constructions in addition to the one of various client equipment. As a result, the electrical strength notable has come to be critical trouble for each client and distributor of electrical power. Active electrical electricity filters have been proposed as environment splendid gear for electrical power pinnacle notch enchantment and reactive electrical strength compensation. Active Power Filters (APFs) have Flipped out to be a possible wish in mitigating the harmonics and reactive electrical electricity compensation in single-phase and three-phase AC electrical energy networks with Non-Linear Loads (NLLs). Conventionally, this paper applied Ant Colony Algorithm (ACO) for tuning PI and reduce Total Harmonic Distortion (THD). The result show reduces THD at 2.33%.

Article
Mathematical Driving Model of Three Phase, Two Level Inverter by (Method of Interconnected Subsystem)

Mohammed .H. Ali

Pages: 73-82

PDF Full Text
Abstract

In this paper describe to mathematical analysis for a three-phase, two level inverter designs. As we know the power electronic devices (inverter) to convert the DC power to AC power (controller on output voltage and frequency level). In Industrial applications, the inverters are used for adjustable speed (AC Drives). In this paper, the mathematical analyses for inverter design are done by using Software packages C++ Builder and visual C++ Language. For non- linear distortions described by the load power factor in power system networks. The P.F is reverse proportional with the harmonics distortion. Small P.F means much more of harmonic distortion, and lower power quality for consumers. to improve the P.F, and power quality in this paper the small capacitor installed as part of the rectified the load current has power (30 KW with P.F load 0.8), the fluctuations of the rectified voltage must not greater than +/- 10%.The power factor proportion of the load power, with Modulation coefficient p.u approximately unity. The calculation is achieved with different integrations steps with load power 30KW, 0.8 P.F. all results done Based on model and experimental data..

Article
Finite Control Set Model Predictive C urrent Control FCS-MPC B ased on C ost F unction O ptimization, with C urrent L imit C onstraints for F our- L eg VSI

Riyadh G. Omar, Rabee' H. Thejel

Pages: 43-53

PDF Full Text
Abstract

A Matlab/Simulink model for the Finite Control Set Model Predictive current Control FCS-MPC based on cost function optimization, with current limit constraints for four-leg VSI is presented in this paper, as a new control algorithm. The algorithm selects the switching states that produce minimum error between the reference currents and the predicted currents via optimization process, and apply the corresponding switching control signals to the inverter switches. The new algorithm also implements current constraints which excludes any switching state that produces currents above the desired references. Therefore, the system response is enhanced since there is no overshoots or deviations from references. Comparison is made between the Space Vector Pulse Width Modulation SVPWM and the FCS-MPC control strategies for the same load conditions. The results show the superiority of the new control strategy with observed reduction in inverter output voltage THD by 10% which makes the FCS-MPC strategy more preferable for loads that requires less harmonics distortion.

1 - 9 of 9 items

Search Parameters

Journal Logo
Iraqi Journal for Electrical and Electronic Engineering

College of Engineering, University of Basrah

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

Copyright © 2025 College of Engineering, University of Basrah. All rights reserved, including those for text and data mining, AI training, and similar technologies.