A model reference adaptive control of condenser and deaerator of steam power plant is presented. A fuzzy-neural identification is constructed as an integral part of the fuzzy-neural controller. Both forward and inverse identification is presented. In the controller implementation, the indirect controller with propagating the error through the fuzzy-neural identifier based on Back Propagating Through Time (BPTT) learning algorithm as well as inverse control structure are proposed. Simulation results are achieved using Multi Input-Multi output (MIMO) type of fuzzy-neural network. Robustness of the plant is detected by including several tests and observations.
The reluctance of industry to allow wireless paths to be incorporated in process control loops has limited the potential applications and benefits of wireless systems. The challenge is to maintain the performance of a control loop, which is degraded by slow data rates and delays in a wireless path. To overcome these challenges, this paper presents an application–level design for a wireless sensor/actuator network (WSAN) based on the “automated architecture”. The resulting WSAN system is used in the developing of a wireless distributed control system (WDCS). The implementation of our wireless system involves the building of a wireless sensor network (WSN) for data acquisition and controller area network (CAN) protocol fieldbus system for plant actuation. The sensor/actuator system is controlled by an intelligent digital control algorithm that involves a controller developed with velocity PID- like Fuzzy Neural Petri Net (FNPN) system. This control system satisfies two important real-time requirements: bumpless transfer and anti-windup, which are needed when manual/auto operating aspect is adopted in the system. The intelligent controller is learned by a learning algorithm based on back-propagation. The concept of petri net is used in the development of FNN to get a correlation between the error at the input of the controller and the number of rules of the fuzzy-neural controller leading to a reduction in the number of active rules. The resultant controller is called robust fuzzy neural petri net (RFNPN) controller which is created as a software model developed with MATLAB. The developed concepts were evaluated through simulations as well validated by real-time experiments that used a plant system with a water bath to satisfy a temperature control. The effect of disturbance is also studied to prove the system's robustness.
This paper deals with the application of Fuzzy-Neural Networks (FNNs) in multi-machine system control applied on hot steel rolling. The electrical drives that used in rolling system are a set of three-phase induction motors (IM) controlled by indirect field-oriented control (IFO). The fundamental goal of this type of control is to eliminate the coupling influence though the coordinate transformation in order to make the AC motor behaves like a separately excited DC motor. Then use Fuzzy-Neural Network in control the IM speed and the rolling plant. In this work MATLAB/SIMULINK models are proposed and implemented for the entire structures. Simulation results are presented to verify the effectiveness of the proposed control schemes. It is found that the proposed system is robust in that it eliminates the disturbances considerably.
In this paper, high tracking performance control structure for rigid robot manipulator is proposed. PD-like Sugano type fuzzy system is used as a main controller, while fuzzy-neural network (FNN) is used as a compensator for uncertainties by minimizing suitable function. The output of FNN is added to the reference trajectories to modify input error space, so that the system robust to any change in system parameters. The proposed structure is simulated and compared with computed torque controller. The simulation study has showed the validity of our structure, also showed its superiority to computed torque controller.
The corrosion of metallic structures buried in soil or submerged in water which became a problem of worldwide significance and causes most of the deterioration in petroleum industry can be controlled by cathodic protection (CP).CP is a popular technique used to minimize the corrosion of metals in a variety of large structures. To prevent corrosion, voltage between the protection metal and the auxiliary anode has to be controlled on a desired level. In this study two types of controllers will be used to set a pipeline potential at required protection level. The first one is a conventional Proportional-Integral-Derivative (PID) controller and the second are intelligent controllers (fuzzy and neural controllers).The results were simulated and implemented using MATLAB R 2010a program which offers predefined functions to develop PID, fuzzy and neural control systems.
Adaptive filtering constitutes one of the core technologies in digital signal processing and finds numerous application areas in science as well as in industry. Adaptive filtering techniques are used in a wide range of applications such as noise cancellation. Noise cancellation is a common occurrence in today telecommunication systems. The LMS algorithm which is one of the most efficient criteria for determining the values of the adaptive noise cancellation coefficients are very important in communication systems, but the LMS adaptive noise cancellation suffers response degrades and slow convergence rate under low Signal-to- Noise ratio (SNR) condition. This paper presents an adaptive noise canceller algorithm based fuzzy and neural network. The major advantage of the proposed system is its ease of implementation and fast convergence. The proposed algorithm is applied to noise canceling problem of long distance communication channel. The simulation results showed that the proposed model is effectiveness.
nan