The main objective of designed the controller for a vehicle suspension system is to reduce the discomfort sensed by passengers which arises from road roughness and to increase the ride handling associated with the pitching and rolling movements. This necessitates a very fast and accurate controller to meet as much control objectives, as possible. Therefore, this paper deals with an artificial intelligence Neuro-Fuzzy (NF) technique to design a robust controller to meet the control objectives. The advantage of this controller is that it can handle the nonlinearities faster than other conventional controllers. The approach of the proposed controller is to minimize the vibrations on each corner of vehicle by supplying control forces to suspension system when travelling on rough road. The other purpose for using the NF controller for vehicle model is to reduce the body inclinations that are made during intensive manoeuvres including braking and cornering. A full vehicle nonlinear active suspension system is introduced and tested. The robustness of the proposed controller is being assessed by comparing with an optimal Fractional Order PI λ D μ (FOPID) controller. The results show that the intelligent NF controller has improved the dynamic response measured by decreasing the cost function.
This work presents a Fuzzy based adaptive Sliding Mode Control scheme to deal with control problem of full vehicle active suspension system and take into consideration the nonlinearities of the spring and damper, unmodeled dynamics as well as the external disturbances. The control law of fuzzy based adaptive Sliding Mode Control scheme will update the parameters of fuzzy sliding mode control by using the stability analysis of Lyapunov criteria such that the convergence in finite time and the stability of the closed loop are ensured. The proposed control scheme consists of four similar subsystems used for the four sides of the vehicle. The sub control scheme contains two loops, the outer loop is built using sliding mode controller with fuzzy estimator to approximate and estimate the unknown parameters in the system. In the inner loop, a controller of type Fractional Order PID (FOPID) is utilized to create the required actuator force. All parameters in the four sub control schemes are optimized utilizing Artificial Bee Colony (ABC) algorithm in order to improve the performance. The results indicate the effectiveness and good achievement of the proposed controller in providing the best ability to limit the vibration with good robustness properties in comparison with passive suspension system and using sliding mode control method. The controlled suspension system shows excellent results when it was tested with and without typical breaking and bending torques.
The main purpose of using the suspension system in vehicles is to prevent the road disturbance from being transmitted to the passengers. Therefore, a precise controller should be designed to improve the performances of suspension system. This paper presents a modeling and control of the nonlinear full vehicle active suspension system with passenger seat utilizing Fuzzy Model Reference Learning Control (FMRLC) technique. The components of the suspension system are: damper, spring and actuator, all of those components have nonlinear behavior, so that, nonlinear forces that are generated by those components should be taken into account when designed the control system. The designed controller consumes high power so that when the control system is used, the vehicle will consume high amount of fuel. It notes that, when vehicle is driven on a rough road; there will be a shock between the sprung mass and the unsprung mass. This mechanical power dissipates and converts into heat power by a damper. In this paper, the wasted power has reclaimed in a proper way by using electromagnetic actuator. The electromagnetic actuator converts the mechanical power into electrical power which can be used to drive the control system. Therefore, overall power consumption demand for the vehicle can be reduced. When the electromagnetic actuator is used three main advantages can be obtained: firstly, fuel consumption by the vehicle is decreased, secondly, the harmful emission is decreases, therefore, our environment is protected, and thirdly, the performance of the suspension system is improved as shown in the obtained results.