Linearization sensors characteristics becomes very interest field for researchers due to the importance in enhance the system performance, measurement accuracy, system design simplicity (hardware and software), reduce system cost, ..etc. in this paper, two approaches has been introduced in order to linearize the sensor characteristics; first is signal condition circuit based on lock up table (LUT) which this method performed for linearize NTC sensor characteristic. Second is ratiometric measurement equation which this method performed for linearize LVDT sensor characteristic. The proposed methods has been simulated by MATLAB, and then implemented by using Anadigm AN221E04 Field Programmable Analog Array (FPAA) development kit which several experiments performed in order to improve the performance of these approaches.
In this work, a new flux controlled memristor circuit is presented. It provides a tool to emulate the pinched hysteresis loop. When driven the memristor by a bipolar periodic signal, the memristor exhibits a “pinched hysteresis loop” in the voltage-current plane and starting from some critical frequency, the hysteresis lobe area decreases monotonically as the excitation frequency increases, the pinched hysteresis loop shrinks to a single-valued function when the frequency tends to infinity. The design model numerically simulated and the physical implementation is achieved by using a field programmable analog array (FPAA). The circuit can be modeled and implemented with a changeable nonlinear function blocks and fixed main system blocks. The simplicity of the specific design method makes this proposed model be a very engaging option for the design of the memristor .