Iraqi Journal for Electrical and Electronic Engineering
Login
Iraqi Journal for Electrical and Electronic Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Proofreading Service
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Abstracting and indexing
    • Announcements
    • Contact

Search Results for firefly-algorithm

Article
An Improved Technique Based on Firefly Algorithm to Estimate the Parameters of the Photovoltaic Model

Issa Ahmed Abed

Pages: 137-145

PDF Full Text
Abstract

This paper present a method to enhance the firefly algorithm by coupling with a local search. The constructed technique is applied to identify the solar parameters model where the method has been proved its ability to obtain the photovoltaic parameters model. Standard firefly algorithm (FA), electromagnetism-like (EM) algorithm, and electromagnetism-like without local (EMW) search algorithm all are compared with the suggested method to test its capability to solve this model.

Article
Reactive Power Optimization with Chaotic Firefly Algorithm and Particle Swarm Optimization in A Distribution Subsystem Network

Hamza Yapıcı Eregli Vocational School, Nurettin Çetinkaya

Pages: 71-78

PDF Full Text
Abstract

In this paper the minimization of power losses in a real distribution network have been described by solving reactive power optimization problem. The optimization has been performed and tested on Konya Eregli Distribution Network in Turkey, a section of Turkish electric distribution network managed by MEDAŞ (Meram Electricity Distribution Corporation). The network contains about 9 feeders, 1323 buses (including 0.4 kV, 15.8 kV and 31.5 kV buses) and 1311 transformers. This paper prefers a new Chaotic Firefly Algorithm (CFA) and Particle Swarm Optimization (PSO) for the power loss minimization in a real distribution network. The reactive power optimization problem is concluded with minimum active power losses by the optimal value of reactive power. The formulation contains detailed constraints including voltage limits and capacitor boundary. The simulation has been carried out with real data and results have been compared with Simulated Annealing (SA), standard Genetic Algorithm (SGA) and standard Firefly Algorithm (FA). The proposed method has been found the better results than the other algorithms.

Article
New Energy Efficient Routing Protocol in Wireless Sensor Networks Using Firefly Algorithm

Safaa Khudair Leabi

Pages: 1-7

PDF Full Text
Abstract

Energy constraint has become the major challenge for designing wireless sensor networks. Network lifetime is considered as the most substantial metric in these networks. Routing technique is one of the best choices for maintaining network lifetime. This paper demonstrates implementation of new methodology of routing in WSN using firefly swarm intelligence. Energy consumption is the dominant issue in wireless sensor networks routing. For network cutoff avoidance while maximize net lifetime energy exhaustion must be balanced. Balancing energy consumption is the key feature for rising nets lifetime of WSNs. This routing technique involves determination of optimal route from node toward sink to make energy exhaustion balance in network and in the same time maximize network throughput and lifetime. The proposed technique show that it is better than other some routing techniques like Dijkstra routing, Fuzzy routing, and ant colony (ACO) routing technique. Results demonstrate that the proposed routing technique has beat the three routing techniques in throughput and extend net lifetime.

1 - 3 of 3 items

Search Parameters

Journal Logo
Iraqi Journal for Electrical and Electronic Engineering

College of Engineering, University of Basrah

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

Copyright © 2025 College of Engineering, University of Basrah. All rights reserved, including those for text and data mining, AI training, and similar technologies.