Face recognition is the technology that verifies or recognizes faces from images, videos, or real-time streams. It can be used in security or employee attendance systems. Face recognition systems may encounter some attacks that reduce their ability to recognize faces properly. So, many noisy images mixed with original ones lead to confusion in the results. Various attacks that exploit this weakness affect the face recognition systems such as Fast Gradient Sign Method (FGSM), Deep Fool, and Projected Gradient Descent (PGD). This paper proposes a method to protect the face recognition system against these attacks by distorting images through different attacks, then training the recognition deep network model, specifically Convolutional Neural Network (CNN), using the original and distorted images. Diverse experiments have been conducted using combinations of original and distorted images to test the effectiveness of the system. The system showed an accuracy of 93% using FGSM attack, 97% using deep fool, and 95% using PGD.
Face recognition technique is an automatic approach for recognizing a person from digital images using mathematical interpolation as matrices for these images. It can be adopted to realize facial appearance in the situations of different poses, facial expressions, ageing and other changes. This paper presents efficient face recognition model based on the integration of image preprocessing, Co-occurrence Matrix of Local Average Binary Pattern (CMLABP) and Principle Component Analysis (PCA) methods respectively. The proposed model can be used to compare the input image with existing database images in order to display or record the citizen information such as name, surname, birth date, etc. The recognition rate of the model is better than 99%. Accordingly, the proposed face recognition system is functional for criminal investigations. Furthermore, it has been compared with other reported works in the literature using diverse databases and training images. .