The reliance on networks and systems has grown rapidly in contemporary times, leading to increased vulnerability to cyber assaults. The Distributed Denial-of-Service (Distributed Denial of Service) attack, a threat that can cause great financial liabilities and reputation damage. To address this problem, Machine Learning (ML) algorithms have gained huge attention, enabling the detection and prevention of DDOS (Distributed Denial of Service) Attacks. In this study, we proposed a novel security mechanism to avoid Distributed Denial of Service attacks. Using an ensemble learning methodology aims to it also can differentiate between normal network traffic and the malicious flood of Distributed Denial of Service attack traffic. The study also evaluates the performance of two well-known ML algorithms, namely, the decision tree and random forest, which were used to execute the proposed method. Tree in defending against Distributed Denial of Service (DDoS) attacks. We test the models using a publicly available dataset called TIME SERIES DATASET FOR DISTRIBUTED DENIAL OF SERVICE ATTACK DETECTION. We compare the performance of models using a list of evaluation metrics developing the Model. This step involves fetching the data, preprocessing it, and splitting it into training and testing subgroups, model selection, and validation. When applied to a database of nearly 11,000 time series; in some cases, the proposed approach manifested promising results and reached an Accuracy (ACC) of up to 100 % in the dataset. Ultimately, this proposed method detects and mitigates distributed denial of service. The solution to securing communication systems from this increasing cyber threat is this: preventing attacks from being successful.
Advancements in internet accessibility and the affordability of digital picture sensors have led to the proliferation of extensive image databases utilized across a multitude of applications. Addressing the semantic gap between low- level attributes and human visual perception has become pivotal in refining Content Based Image Retrieval (CBIR) methodologies, especially within this context. As this field is intensely researched, numerous efficient algorithms for CBIR systems have surfaced, precipitating significant progress in the artificial intelligence field. In this study, we propose employing a hard voting ensemble approach on features derived from three robust deep learning architectures: Inception, Exception, and Mobilenet. This is aimed at bridging the divide between low-level image features and human visual perception. The Euclidean method is adopted to determine the similarity metric between the query image and the features database. The outcome was a noticeable improvement in image retrieval accuracy. We applied our approach to a practical dataset named CBIR 50, which encompasses categories such as mobile phones, cars, cameras, and cats. The effectiveness of our method was thereby validated. Our approach outshone existing CBIR algorithms with superior accuracy (ACC), precision (PREC), recall (REC), and F1-score (F1-S), proving to be a noteworthy addition to the field of CBIR. Our proposed methodology could be potentially extended to various other sectors, including medical imaging and surveillance systems, where image retrieval accuracy is of paramount importance.