Iraqi Journal for Electrical and Electronic Engineering
Login
Iraqi Journal for Electrical and Electronic Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Proofreading Service
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Abstracting and indexing
    • Announcements
    • Contact

Search Results for energy-prediction

Article
Energy Demand Prediction Based on Deep Learning Techniques

Sarab Shanan Swide, Ali F. Marhoon

Pages: 83-89

PDF Full Text
Abstract

The development of renewable resources and the deregulation of the market have made forecasting energy demand more critical in recent years. Advanced intelligent models are created to ensure accurate power projections for several time horizons to address new difficulties. Intelligent forecasting algorithms are a fundamental component of smart grids and a powerful tool for reducing uncertainty in order to make more cost- and energy-efficient decisions about generation scheduling, system reliability and power optimization, and profitable smart grid operations. However, since many crucial tasks of power operators, such as load dispatch, rely on short-term forecasts, prediction accuracy in forecasting algorithms is highly desired. This essay suggests a model for estimating Denmark’s power use that can precisely forecast the month’s demand. In order to identify factors that may have an impact on the pattern of a number of unique qualities in the city direct consumption of electricity. The current paper also demonstrates how to use an ensemble deep learning technique and Random forest to dramatically increase prediction accuracy. In addition to their ensemble, we showed how well the individual Random forest performed.

1 - 1 of 1 items

Search Parameters

Journal Logo
Iraqi Journal for Electrical and Electronic Engineering

College of Engineering, University of Basrah

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

Copyright © 2025 College of Engineering, University of Basrah. All rights reserved, including those for text and data mining, AI training, and similar technologies.