The Intelligent Control of Vibration Energy Harvesting system is presented in this paper. The harvesting systems use a me- chanical vibration to generate electrical energy in a suitable form for use. Proportional-Integrated-derivative controller and Fuzzy Logic controller have been suggested; their parameters are optimized using a new heuristic algorithm, the Camel Trav- eling Algorithm(CTA). The proposed circuit Simulink model was constructed in Matlab facilities, and the model was tested under various operating conditions. The results of the simulation using the CTA was compared with two other methods.
Vehicular network security had spanned and covered a wide range of security related issues. However solar energy harvesting Road Side Unit (RSU) security was not defined clearly, it is this aspect that is considered in this paper. In this work, we will suggest an RSU security model to protect it against different internal and external threats. The main goal is to protect RSU specific data (needed for its operation) as well as its functionality and accessibility. The suggested RSU security model must responds to many objectives, it should ensure that the administrative information exchanged is correct and undiscoverable (information authenticity and privacy), the source (e.g., VANET server) is who he claims to be (message integrity and source authentication) and the system is robust and available (using Intrusion Detection System (IDS)). In this paper, we suggest many techniques to strength RSU security and they were prototyped using an experimental model based on Ubicom IP2022 network processor development kit .
The ability to harvest energy from the environment represents an important technology area that promises to eliminate wires and battery maintenance for many important applications and permits deploying self powered devices. This paper suggests the use of a solar energy harvester to charge mobile phone devices. In the beginning, a comprehensive overview to the energy harvesting concept and technologies is presented. Then the design procedure of our energy harvester was detailed. Our prototype solar energy harvester proves its efficiency to charge the aimed batteries under sunlight or an indoor artificial light.
In different modern and future wireless communication networks, a large number of low-power user equipment (UE) devices like Internet of Things, sensor terminals, and smart modules have to be supported over constrained power and bandwidth resources. Therefore, wireless-powered communication (WPC) is considered a promising technology for varied applications in which the energy harvesting (EH) from radio frequency radiations is exploited for data transmission. This requires efficient resource allocation schemes to optimize the performance of WPC and prolong the network lifetime. In this paper, harvest-then-transmit-based WP non-orthogonal multiple access (WP-NOMA) system is designed with time-split (TS) and power control (PC) allocation strategies. To evaluate the network performance, the sum rate and UEs’ rates expressions are derived considering power-domain NOMA with successive interference cancellation detection. For comparison purposes, the rate performance of the conventional WP orthogonal multiple access (WP-OMA) is derived also considering orthogonal frequency-division multiple access and time-division multiple access schemes. Intensive investigations are conducted to obtain the best TS and PC resource parameters that enable maximum EH for higher data transmission rates compared with the reference WP-OMA techniques. The achieved outcomes demonstrate the effectiveness of designed resource allocation approaches in terms of the realized sum rate, UE’s rate, rate region, and fairness without distressing the restricted power of far UEs.