Iraqi Journal for Electrical and Electronic Engineering
Login
Iraqi Journal for Electrical and Electronic Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Proofreading Service
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Abstracting and indexing
    • Announcements
    • Contact

Search Results for eight-legged-robot

Article
Design a Stable an Intelligent Controller for an Eight-legged Robot

Fatima Khayoun, Ammar Aldair

Pages: 206-215

PDF Full Text
Abstract

At recent days, the robot performs many tasks on behalf of humans or in support of humans. Among the most prominent benefits of robots for humans are removing the risk factor from humans, completing routine tasks for humans, saving a lot of time and effort, and mastering work. This paper presents a model of an eight-legged robot equipped with an intelligent controller that was simulated using MATLAB. The designed structure contains 24 controllers, three for each leg, to provide flexibility in movement and rotation. Proportional Integral Derivative (PID) controller has been used in this work , each leg contains three PIDs. A particle swarm optimization algorithm (PSO) was used to adjust the parameters of the PID controller (Kp , Ki and Kd). The structure of eight legs robot with controller is implemented using Simscape Multibody in the MATLAB program, where the movement of the eight-legged robot is visualized and analyzed without the need for complex analysis associated with a mathematical model. The simulation results were conducted in a three-dimensional environment and were presented in two scenarios . The first was implementing and simulating the robot without using a controller, which leads to the robot falling at the starting point. The second was when a PID controllers are used with the system, where better movement was obtained. Finally, the robustness of the controller was verified by changing the load that the robot bears.

Article
Design and Implementation of Hybrid-Climbing Legged Robot

Mustafa Y. Hassan, Mofeed T. Rashid, Ali H. Abdulaali

Pages: 37-46

PDF Full Text
Abstract

In this paper, the hybrid-climbing legged robot is designed, implemented, and practically tested. The robot has four legs arranged symmetrically around the body were designed for climbing wire mesh fence. Each leg in robot has 3DOF which makes the motion of the robot is flexible. The robot can climb the walls vertically by using a unique design of gripper device included metal hooks. The mechanism of the movement is a combination of two techniques, the first is the common way for the successive movement like gecko by using four limbs, and the second depending on the method that used by cats for climbing on the trees using claws, for this reason, the robot is named hybrid-climbing legged robot. The movement mechanism of the climbing robot is achieved by emulating the motion behavior of the gecko, which helped to derive the kinematic equations of the robot. The robot was practically implemented by using a microcontroller for the mainboard controller while the structure of the robot body is designed by AutoCAD software. Several experiments performed in order to test the success of climbing on the vertical wire mesh fence.

1 - 2 of 2 items

Search Parameters

Journal Logo
Iraqi Journal for Electrical and Electronic Engineering

College of Engineering, University of Basrah

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

Copyright © 2025 College of Engineering, University of Basrah. All rights reserved, including those for text and data mining, AI training, and similar technologies.