At recent days, the robot performs many tasks on behalf of humans or in support of humans. Among the most prominent benefits of robots for humans are removing the risk factor from humans, completing routine tasks for humans, saving a lot of time and effort, and mastering work. This paper presents a model of an eight-legged robot equipped with an intelligent controller that was simulated using MATLAB. The designed structure contains 24 controllers, three for each leg, to provide flexibility in movement and rotation. Proportional Integral Derivative (PID) controller has been used in this work , each leg contains three PIDs. A particle swarm optimization algorithm (PSO) was used to adjust the parameters of the PID controller (Kp , Ki and Kd). The structure of eight legs robot with controller is implemented using Simscape Multibody in the MATLAB program, where the movement of the eight-legged robot is visualized and analyzed without the need for complex analysis associated with a mathematical model. The simulation results were conducted in a three-dimensional environment and were presented in two scenarios . The first was implementing and simulating the robot without using a controller, which leads to the robot falling at the starting point. The second was when a PID controllers are used with the system, where better movement was obtained. Finally, the robustness of the controller was verified by changing the load that the robot bears.
In this paper, the hybrid-climbing legged robot is designed, implemented, and practically tested. The robot has four legs arranged symmetrically around the body were designed for climbing wire mesh fence. Each leg in robot has 3DOF which makes the motion of the robot is flexible. The robot can climb the walls vertically by using a unique design of gripper device included metal hooks. The mechanism of the movement is a combination of two techniques, the first is the common way for the successive movement like gecko by using four limbs, and the second depending on the method that used by cats for climbing on the trees using claws, for this reason, the robot is named hybrid-climbing legged robot. The movement mechanism of the climbing robot is achieved by emulating the motion behavior of the gecko, which helped to derive the kinematic equations of the robot. The robot was practically implemented by using a microcontroller for the mainboard controller while the structure of the robot body is designed by AutoCAD software. Several experiments performed in order to test the success of climbing on the vertical wire mesh fence.