Iraqi Journal for Electrical and Electronic Engineering
Login
Iraqi Journal for Electrical and Electronic Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Proofreading Service
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Abstracting and indexing
    • Announcements
    • Contact

Search Results for eeg

Article
Comparison of Complex-Valued Independent Component Analysis Algorithms for EEG Data

Ali Al-Saegh

Pages: 1-12

PDF Full Text
Abstract

Independent Component Analysis (ICA) has been successfully applied to a variety of problems, from speaker identification and image processing to functional magnetic resonance imaging (fMRI) of the brain. In particular, it has been applied to analyze EEG data in order to estimate the sources form the measurements. However, it soon became clear that for EEG signals the solutions found by ICA often depends on the particular ICA algorithm, and that the solutions may not always have a physiologically plausible interpretation. Therefore, nowadays many researchers are using ICA largely for artifact detection and removal from EEG, but not for the actual analysis of signals from cortical sources. However, a recent modification of an ICA algorithm has been applied successfully to EEG signals from the resting state. The key idea was to perform a particular preprocessing and then apply a complex- valued ICA algorithm. In this paper, we consider multiple complex-valued ICA algorithms and compare their performance on real-world resting state EEG data. Such a comparison is problematic because the way of mixing the original sources (the “ground truth”) is not known. We address this by developing proper measures to compare the results from multiple algorithms. The comparisons consider the ability of an algorithm to find interesting independent sources, i.e. those related to brain activity and not to artifact activity. The performance of locating a dipole for each separated independent component is considered in the comparison as well. Our results suggest that when using complex-valued ICA algorithms on preprocessed signals the resting state EEG activity can be analyzed in terms of physiological properties. This reestablishes the suitability of ICA for EEG analysis beyond the detection and removal of artifacts with real-valued ICA applied to the signals in the time-domain.

Article
BRAIN MACHINE INTERFACE: ANALYSIS OF SEGMENTED EEG SIGNAL CLASSIFICATION USING SHORT-TIME PCA AND RECURRENT NEURAL NETWORKS

Hema C.R., Paulraj M.P., Nagarajan R., Sazali Yaacob, Abdul Hamid Adom

Pages: 77-85

PDF Full Text
Abstract

Brain machine interface provides a communication channel between the human brain and an external device. Brain interfaces are studied to provide rehabilitation to patients with neurodegenerative diseases; such patients loose all communication pathways except for their sensory and cognitive functions. One of the possible rehabilitation methods for these patients is to provide a brain machine interface (BMI) for communication; the BMI uses the electrical activity of the brain detected by scalp EEG electrodes. Classification of EEG signals extracted during mental tasks is a technique for designing a BMI. In this paper a BMI design using five mental tasks from two subjects were studied, a combination of two tasks is studied per subject. An Elman recurrent neural network is proposed for classification of EEG signals. Two feature extraction algorithms using overlapped and non overlapped signal segments are analyzed. Principal component analysis is used for extracting features from the EEG signal segments. Classification performance of overlapping EEG signal segments is observed to be better in terms of average classification with a range of 78.5% to 100%, while the non overlapping EEG signal segments show better classification in terms of maximum classifications.

Article
EEG Motor-Imagery BCI System Based on Maximum Overlap Discrete Wavelet Transform (MODWT) and Machine learning algorithm

Samaa S. Abdulwahab, Hussain K. Khleaf, Manal H. Jassim

Pages: 38-45

PDF Full Text
Abstract

The ability of the human brain to communicate with its environment has become a reality through the use of a Brain-Computer Interface (BCI)-based mechanism. Electroencephalography (EEG) has gained popularity as a non-invasive way of brain connection. Traditionally, the devices were used in clinical settings to detect various brain diseases. However, as technology advances, companies such as Emotiv and NeuroSky are developing low-cost, easily portable EEG-based consumer-grade devices that can be used in various application domains such as gaming, education. This article discusses the parts in which the EEG has been applied and how it has proven beneficial for those with severe motor disorders, rehabilitation, and as a form of communicating with the outside world. This article examines the use of the SVM, k-NN, and decision tree algorithms to classify EEG signals. To minimize the complexity of the data, maximum overlap discrete wavelet transform (MODWT) is used to extract EEG features. The mean inside each window sample is calculated using the Sliding Window Technique. The vector machine (SVM), k-Nearest Neighbor, and optimize decision tree load the feature vectors.

Article
A Systematic Review of Brain-Computer Interface Based EEG

Samaa S. Abdulwahab, Hussain K. Khleaf, Manal H. Jassim

Pages: 81-90

PDF Full Text
Abstract

The futuristic age requires progress in handwork or even sub-machine dependency and Brain-Computer Interface (BCI) provides the necessary BCI procession. As the article suggests, it is a pathway between the signals created by a human brain thinking and the computer, which can translate the signal transmitted into action. BCI-processed brain activity is typically measured using EEG. Throughout this article, further intend to provide an available and up-to-date review of EEG-based BCI, concentrating on its technical aspects. In specific, we present several essential neuroscience backgrounds that describe well how to build an EEG-based BCI, including evaluating which signal processing, software, and hardware techniques to use. Individuals discuss Brain-Computer Interface programs, demonstrate some existing device shortcomings, and propose some eld’s viewpoints.

Article
Wavelet-based Hybrid Learning Framework for Motor Imagery Classification

Z. T. Al-Qaysi, Ali Al-Saegh, Ahmed Faeq Hussein, M. A. Ahmed

Pages: 47-56

PDF Full Text
Abstract

Due to their vital applications in many real-world situations, researchers are still presenting bunches of methods for better analysis of motor imagery (MI) electroencephalograph (EEG) signals. However, in general, EEG signals are complex because of their nonstationary and high-dimensionality properties. Therefore, high consideration needs to be taken in both feature extraction and classification. In this paper, several hybrid classification models are built and their performance is compared. Three famous wavelet mother functions are used for generating scalograms from the raw signals. The scalograms are used for transfer learning of the well-known VGG-16 deep network. Then, one of six classifiers is used to determine the class of the input signal. The performance of different combinations of mother functions and classifiers are compared on two MI EEG datasets. Several evaluation metrics show that a model of VGG-16 feature extractor with a neural network classifier using the Amor mother wavelet function has outperformed the results of state-of-the-art studies.

Article
Epileptic detection based on deep learning: A review

Ola M. Assim, Ahlam F. Mahmood

Pages: 115-126

PDF Full Text
Abstract

Epilepsy, a neurological disorder characterized by recurring seizures, necessitates early and precise detection for effective management. Deep learning techniques have emerged as powerful tools for analyzing complex medical data, specifically electroencephalogram (EEG) signals, advancing epileptic detection. This review comprehensively presents cutting-edge methodologies in deep learning-based epileptic detection systems. Beginning with an overview of epilepsy’s fundamental concepts and their implications for individuals and healthcare are present. This review then delves into deep learning principles and their application in processing EEG signals. Diverse research papers to know the architectures—convolutional neural networks, recurrent neural networks, and hybrid models—are investigated, emphasizing their strengths and limitations in detecting epilepsy. Preprocessing techniques for improving EEG data quality and reliability, such as noise reduction, artifact removal, and feature extraction, are discussed. Present performance evaluation metrics in epileptic detection, such as accuracy, sensitivity, specificity, and area under the curve, are provided. This review anticipates future directions by highlighting challenges such as dataset size and diversity, model interpretability, and integration with clinical decision support systems. Finally, this review demonstrates how deep learning can improve the precision, efficiency, and accessibility of early epileptic diagnosis. This advancement allows for more timely interventions and personalized treatment plans, potentially revolutionizing epilepsy management.

Article
Session to Session Transfer Learning Method Using Independent Component Analysis with Regularized Common Spatial Patterns for EEG-MI Signals

Zaineb M. Alhakeem, Ramzy S. Ali

Pages: 13-27

PDF Full Text
Abstract

Training the user in Brain-Computer Interface (BCI) systems based on brain signals that recorded using Electroencephalography Motor Imagery (EEG-MI) signal is a time-consuming process and causes tiredness to the trained subject, so transfer learning (subject to subject or session to session) is very useful methods of training that will decrease the number of recorded training trials for the target subject. To record the brain signals, channels or electrodes are used. Increasing channels could increase the classification accuracy but this solution costs a lot of money and there are no guarantees of high classification accuracy. This paper introduces a transfer learning method using only two channels and a few training trials for both feature extraction and classifier training. Our results show that the proposed method Independent Component Analysis with Regularized Common Spatial Pattern (ICA-RCSP) will produce about 70% accuracy for the session to session transfer learning using few training trails. When the proposed method used for transfer subject to subject the accuracy was lower than that for session to session but it still better than other methods.

1 - 7 of 7 items

Search Parameters

Journal Logo
Iraqi Journal for Electrical and Electronic Engineering

College of Engineering, University of Basrah

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

Copyright © 2025 College of Engineering, University of Basrah. All rights reserved, including those for text and data mining, AI training, and similar technologies.