Given the role that pipelines play in transporting crude oil, which is considered the basis of the global economy and across different environments, hundreds of studies revolve around providing the necessary protection for it. Various technologies have been employed in this pursuit, differing in terms of cost, reliability, and efficiency, among other factors. Computer vision has emerged as a prominent technique in this field, albeit requiring a robust image-processing algorithm for spill detection. This study employs image segmentation techniques to enable the computer to interpret visual information and images effectively. The research focuses on detecting spills in oil pipes caused by leakage, utilizing images captured by a drone equipped with a Raspberry Pi and Pi camera. These images, along with their global positioning system (GPS) location, are transmitted to the base station using the message queuing telemetry transport Internet of Things (MQTT IoT) protocol. At the base station, deep learning techniques, specifically Holistically-Nested Edge Detection (HED) and extreme inception (Xception) networks, are employed for image processing to identify contours. The proposed algorithm can detect multiple contours in the images. To pinpoint a contour with a black color, representative of an oil spill, the CIELAB color space (LAB) algorithm effectively removes shadow effects. If a contour is detected, its area and perimeter are calculated to determine whether it exceeds a certain threshold. The effectiveness of the proposed system was tested on Iraqi oil pipeline systems, demonstrating its capability to detect spills of different sizes.
Image segmentation is a wide research topic; a huge amount of research has been performed in this context. Image segmentation is a crucial procedure for most object detection, image recognition, feature extraction, and classification tasks depend on the quality of the segmentation process. Image segmentation is the dividing of a specific image into a numeral of homogeneous segments; therefore, the representation of an image into simple and easy forms increases the effectiveness of pattern recognition. The effectiveness of approaches varies according to the conditions of objects arrangement, lighting, shadow and other factors. However, there is no generic approach for successfully segmenting all images, where some approaches have been proven to be more effective than others. The major goal of this study is to provide summarize of the disadvantages and the advantages of each of the reviewed approaches of image segmentation.
Pre-processing is very useful in a variety of situations since it helps to suppress information that is not related to the exact image processing or analysis task. Mathematical morphology is used for analysis, understanding and image processing. It is an influential method in the geometric morphological analysis and image understanding. It has befallen a new theory in the digital image processing domain. Edges detection and noise reduction are a crucial and very important pre-processing step. The classical edge detection methods and filtering are less accurate in detecting complex edge and filtering various types of noise. This paper proposed some useful mathematic morphological techniques to detect edge and to filter noise in metal parts image. The experimental result showed that the proposed algorithm helps to increase accuracy of metal parts inspection system.