Iraqi Journal for Electrical and Electronic Engineering
Login
Iraqi Journal for Electrical and Electronic Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Proofreading Service
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Abstracting and indexing
    • Announcements
    • Contact

Search Results for disturbances

Article
Fuzzy Logic Controller Based DVR For Power Quality Improvement under Different Power Disturbances with Non-Linear Loads

Abdul-Jabbar Fathel Ali, Wael Hussein Zayer, Samhar Saeed Shukir

Pages: 50-60

PDF Full Text
Abstract

The power quality problems can be defined as the difference between the quality of power supplied and the quality of power required. Recently a large interest has been focused on a power quality domain due to: disturbances caused by non-linear loads and Increase in number of electronic devices. Power quality measures the fitness of the electric power transmitted from generation to industrial, domestic and commercial consumers. At least 50% of power quality problems are of voltage quality type. Voltage sag is the serious power quality issues for the electric power industry and leads to the damage of sensitive equipments like, computers, programmable logic controller (PLC), adjustable speed drives (ADS). The prime goal of this paper is to investigate the performance of the Fuzzy Logic controller based DVR in reduction the power disturbances to restore the load voltage to the nominal value and reduce the THD to a permissible value which is 5% for the system less than 69Kv. The modeling and simulation of a power distribution system have been achieved using MATLABL/Simulink. Different faults conditions and power disturbances with linear and non-linear loads are created with the proposed system, which are initiated at a duration of 0.8sec and kept till 0.95sec.

Article
STATCOM for Dynamic Performance Optimization of Grid Connected Wind Power System

Ahmed AbdElmalek AbdElHafez, Jaber Ibrehaim AL-Sadey, Radwan Taha Al-Bouthigy

Pages: 66-74

PDF Full Text
Abstract

Large disturbances in an induction generator-based wind system necessitate rapid compensation for the reactive power. This article addresses the application of Static Synchronous Compensator (STATCOM) in optimizing the performance of grid connected wind power system. The functionality of the static synchronous compensator in maintaining system stability and reliability during/post diverse severe disturbances is thoroughly investigated. A design procedure for STATCOM, particularly the capacitor in the DC side was advised.

Article
Design and Implementation of Neuro-Fuzzy Controller Using FPGA for Sun Tracking System

Ammar A. Aldair, Adel A. Obed, Ali F. Halihal

Pages: 123-136

PDF Full Text
Abstract

Nowadays, renewable energy is being used increasingly because of the global warming and destruction of the environment. Therefore, the studies are concentrating on gain of maximum power from this energy such as the solar energy. A sun tracker is device which rotates a photovoltaic (PV) panel to the sun to get the maximum power. Disturbances which are originated by passing the clouds are one of great challenges in design of the controller in addition to the losses power due to energy consumption in the motors and lifetime limitation of the sun tracker. In this paper, the neuro-fuzzy controller has been designed and implemented using Field Programmable Gate Array (FPGA) board for dual axis sun tracker based on optical sensors to orient the PV panel by two linear actuators. The experimental results reveal that proposed controller is more robust than fuzzy logic controller and proportional- integral (PI) controller since it has been trained offline using Matlab tool box to overcome those disturbances. The proposed controller can track the sun trajectory effectively, where the experimental results reveal that dual axis sun tracker power can collect 50.6% more daily power than fixed angle panel. Whilst one axis sun tracker power can collect 39.4 % more daily power than fixed angle panel. Hence, dual axis sun tracker can collect 8 % more daily power than one axis sun tracker .

Article
Optimal Learning Controller Design Using Particle Swarm Optimization: Applied to CSI System

Khulood Moosa Omran, Abdul-Basset A. Al- Hussein, Basil Hani Jassim

Pages: 104-112

PDF Full Text
Abstract

In this article, a PD-type iterative learning control algorithm (ILC) is proposed to a nonlinear time-varying system for cases of measurement disturbances and the initial state errors. The proposed control approach uses a simple structure and has an easy implementation. The iterative learning controller was utilized to control a constant current source inverter (CSI) with pulse width modulation (PWM); subsequently the output current trajectory converged the sinusoidal reference signal and provided constant switching frequency. The learning controller's parameters were tuned using particle swarm optimization approach to get best optimal control for the system output. The tracking error limit is achieved using the convergence exploration. The proposed learning control scheme was robust against the error in initial conditions and disturbances which outcome from the system modeling inaccuracies and uncertainties. It could correct the distortion of the inverter output current waveform with less computation and less complexity. The proposed algorithm was proved mathematically and through computer simulation. The proposed optimal learning method demonstrated good performances.

Article
Pitch Angle Regulation of Floating Wind Turbines with Dynamic Uncertainty and External Disturbances

Najah F. Jasim

Pages: 50-54

PDF Full Text
Abstract

This paper addresses the problem of pitch angle regulation of floating wind turbines with the presence of dynamic uncertainty and unknown disturbances usually encountered in offshore wind turbines, where two control laws are derived for two different cases to continuously achieve zero pitch angle for the floating turbine. In the first case, the time- varying unknown coefficients that characterize the turbine's dynamics are assumed reasonably bounded by known functions, where robust controller is designed in terms of these known functions to achieve zero pitch angle for the turbine with exponential rate of convergence. While in the second case, the turbine's dynamics are considered to be characterized by unknown coefficients of unknown bounds. In this case, a sliding- mode adaptive controller is constructed in terms of estimated values for the unknown coefficients, where these values are continuously updated by adaptive laws associated with the proposed controller to ensure asymptotic convergence to zero for the turbine's pitch angle. Simulations are performed to demonstrate the validity of the proposed controllers to achieve the required regulation objective.

Article
Online Genetic-Fuzzy Forward Controller for a Robot Arm

Prof Dr. Abduladeem A. Ali, Amal J. Kudaer

Pages: 60-73

PDF Full Text
Abstract

The robot is a repeated task plant. The control of such a plant under parameter variations and load disturbances is one of the important problems. The aim of this work is to design Genetic-Fuzzy controller suitable for online applications to control single link rigid robot arm plant. The genetic-fuzzy online controller (forward controller) contains two parts, an identifier part and model reference controller part. The identification is based on forward identification technique. The proposed controller it tested in normal and load disturbance conditions.

Article
Sliding Mode Control-Based Chaos Stabilization in PM DC Motor Drive

Mohammed Abbas Abdullah, Fadhil Rahma Tahir, Khalid M. Abdul-Hassan

Pages: 198-206

PDF Full Text
Abstract

In this paper, a model of PM DC Motor Drive is presented. The nonlinear dynamics of PM DC Motor Drive is discussed. The drive system shows different dynamical behaviors; periodic, quasi-period, and chaotic and are characterized by bifurcation diagrams, time series evolution, and phase portrait. The stabilization of chaos to a fixed point is adopted using slide mode controller (SMC). The chaotic dynamics are suppressed and the fixed point dynamics are observed after the activation of proposed controller. Numerical simulation results show the effectiveness of the proposed method of control for stabilization the chaos and different disturbances in the system.

Article
An ABC Optimized Adaptive Fuzzy Sliding Mode Control Strategy for Full Vehicle Active Suspension System

Atheel K. Abdul Zahra, Turki Y. Abdalla

Pages: 151-165

PDF Full Text
Abstract

This work presents a Fuzzy based adaptive Sliding Mode Control scheme to deal with control problem of full vehicle active suspension system and take into consideration the nonlinearities of the spring and damper, unmodeled dynamics as well as the external disturbances. The control law of fuzzy based adaptive Sliding Mode Control scheme will update the parameters of fuzzy sliding mode control by using the stability analysis of Lyapunov criteria such that the convergence in finite time and the stability of the closed loop are ensured. The proposed control scheme consists of four similar subsystems used for the four sides of the vehicle. The sub control scheme contains two loops, the outer loop is built using sliding mode controller with fuzzy estimator to approximate and estimate the unknown parameters in the system. In the inner loop, a controller of type Fractional Order PID (FOPID) is utilized to create the required actuator force. All parameters in the four sub control schemes are optimized utilizing Artificial Bee Colony (ABC) algorithm in order to improve the performance. The results indicate the effectiveness and good achievement of the proposed controller in providing the best ability to limit the vibration with good robustness properties in comparison with passive suspension system and using sliding mode control method. The controlled suspension system shows excellent results when it was tested with and without typical breaking and bending torques.

Article
Fuzzy Petri Net Controller for Quadrotor System using Particle Swam Optimization

Mohammed J. Mohammed, Abduladhem A. Ali, Mofeed T. Rashid

Pages: 132-144

PDF Full Text
Abstract

In this paper, fuzzy Petri Net controller is used for Quadrotor system. The fuzzy Petrinet controller is arranged in the velocity PID form. The optimal values for the fuzzy Petri Net controller parameters have been achieved by using particle swarm optimization algorithm. In this paper, the reference trajectory is obtained from a reference model that can be designed to have the ideal required response of the Quadrotor, also using the quadrotor equations to find decoupling controller is first designed to reduce the effect of coupling between different inputs and outputs of quadrotor. The system performance has been measured by MATLAB. Simulation results showed that the FPN controller has a reasonable robustness against disturbances and good dynamic performance.

Article
Adaptive Energy Management System for Smart Hybrid Microgrids

Bilal Naji Alhasnawi, Basil H. Jasim

Pages: 73-85

PDF Full Text
Abstract

The energy management will play an important role in the future smart grid by managing loads in an intelligent way. Energy management programs, realized via House Energy Management systems (HEMS) for smart cities, provide many benefits; consumers enjoy electricity price savings, and utility operates at reduced peak demand. This paper proposed an adaptive energy management system for islanded mode and grid-connected mode. In this paper, a hybrid system that includes distribution electric grid, photovoltaics, and batteries are employed as energy sources in the residential of the consumer in order to meet the demand. The proposed system permits coordinated operation of distributed energy resources to concede necessary active power and additional service whenever required. This paper uses home energy management system which switches between the distributed energy and the grid power sources. The home energy management system incorporates controllers for maximum power point tracking, battery charge and discharge and inverter for effective control between different sources depending upon load requirement and availability of sources at maximum powerpoint. Also, in this paper, the Maximum Power Point Tracking (MPPT) technique is applied to the photovoltaic station to extract the maximum power from hybrid power system during variation of the environmental conditions. The operation strategy of energy storage systems is proposed to solve the power changes from photovoltaics and houses loads fluctuations locally, instead of reflecting those disturbances to the utility grid. Furthermore, the energy storage systems energy management scheme will help to achieve the peak reduction of the houses daily electrical load demand. The simulation results have verified the effectiveness and feasibility of the introduced strategy and the capability of the proposed controller for a hybrid microgrid operating in different modes.

Article
Fuzzy-Neural Control of Hot-Rolling Mill

Khearia Mohamad, Abduladhem A Ali, Dr. R. Nagrajan

Pages: 150-157

PDF Full Text
Abstract

This paper deals with the application of Fuzzy-Neural Networks (FNNs) in multi-machine system control applied on hot steel rolling. The electrical drives that used in rolling system are a set of three-phase induction motors (IM) controlled by indirect field-oriented control (IFO). The fundamental goal of this type of control is to eliminate the coupling influence though the coordinate transformation in order to make the AC motor behaves like a separately excited DC motor. Then use Fuzzy-Neural Network in control the IM speed and the rolling plant. In this work MATLAB/SIMULINK models are proposed and implemented for the entire structures. Simulation results are presented to verify the effectiveness of the proposed control schemes. It is found that the proposed system is robust in that it eliminates the disturbances considerably.

Article
Neural Network-Based Adaptive Control of Robotic Manipulator: Application to a Three Links Cylindrical Robot

Abdul-Basset A. AL-Hussein

Pages: 114-122

PDF Full Text
Abstract

A composite PD and sliding mode neural network (NN)-based adaptive controller, for robotic manipulator trajectory tracking, is presented in this paper. The designed neural networks are exploited to approximate the robotics dynamics nonlinearities, and compensate its effect and this will enhance the performance of the filtered error based PD and sliding mode controller. Lyapunov theorem has been used to prove the stability of the system and the tracking error boundedness. The augmented Lyapunov function is used to derive the NN weights learning law. To reduce the effect of breaching the NN learning law excitation condition due to external disturbances and measurement noise; a modified learning law is suggested based on e-modification algorithm. The controller effectiveness is demonstrated through computer simulation of cylindrical robot manipulator.

Article
Combined Neural Network and PD Adaptive Tracking Controller for Ship Steering System

Abdul-Basset Al- Hussein

Pages: 59-66

PDF Full Text
Abstract

In this paper, a combined RBF neural network sliding mode control and PD adaptive tracking controller is proposed for controlling the directional heading course of a ship. Due to the high nonlinearity and uncertainty of the ship dynamics as well as the effect of wave disturbances a performance evaluation and ship controller design is stay difficult task. The Neural network used for adaptively learn the uncertain dynamics bounds of the ship and their output used as part of the control law moreover the PD term is used to reduce the effect of the approximation error inherited in the RBF networks. The stability of the system with the combined control law guaranteed through Lyapunov analysis. Numeric simulation results confirm the proposed controller provide good system stability and convergence.

Article
Improving the Dynamic Response of Half-Car Model using Modified PID Controller

Mustafa Mohammed Matrood, Ameen Ahmed Nassar

Pages: 54-61

PDF Full Text
Abstract

This paper focuses on the vibration suppression of a half-car model by using a modified PID controller. Mostly, car vibrations could result from some road disturbances, such as bumps or potholes transmitted to a car body. The proposed controller consists of three main components as in the case of the conventional PID controller which are (Proportional, Integral, and Derivative) but the difference is in the positions of these components in the control loop system. Initially, a linear half-car suspension system is modeled in two forms passive and active, the activation process occurred using a controlled hydraulic actuator. Thereafter, the two systems have been simulated using MATLAB/Simulink software in order to demonstrate the dynamic response. A comparison between conventional and modified PID controllers has been carried out. The resulting dynamic response of the half-car model obtained from the simulation process was improved when using a modified PID controller compared with the conventional PID controller. Moreover, the efficiency and performance of the half-car model suspension have been significantly enhanced by using the proposed controller. Thus, achieving high vehicle stability and ride comfort.

1 - 14 of 14 items

Search Parameters

Journal Logo
Iraqi Journal for Electrical and Electronic Engineering

College of Engineering, University of Basrah

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

Copyright © 2025 College of Engineering, University of Basrah. All rights reserved, including those for text and data mining, AI training, and similar technologies.