In developing nations, such as Iraq, supplying power to isolated and rural border areas that are not connected to the grid continues to be a problem. At present, fossil fuels, which are significant causes of pollution, supply around 80% of the world’s energy demands. Nonetheless, drastically reducing reliance on fossil fuels has many reasons, including depleting global fossil fuel supplies, increasing costs and growing energy needs. The present study examines the electrical requirements of the Al-Teeb area, a city situated in the eastern region of Iraq, close to the Iranian border. This region has not been researched despite its tourism and oil significance. Despite the unpredictable expansion of many isolated locations in Iraq in recent years, the number of generation stations has not changed. Supplying energy to these places will require considerable time and money. Photovoltaics (PV), wind turbines (WTs), diesel generators (DGs), batteries and converters combined on the basis of their compatibility under three distinct scenarios comprise the system’s components. Considering the lowest net present cost (NPC) and cost of energy (COE) of all the examined scenarios, PV, WTs, batteries and DGs are the most economical solutions for the Al-Teeb area. Number of PV (1,215), number of WTs (59), number of DGs (13), number of batteries (3,138), number of converters (47), COE (0.155 US$/kWh), NPC (14.2 million US$) and initial capital cost (4.91 million US$) are revealed by the results. Finally, the results are confirmed using another global optimization method, namely, modified particle swarm optimization.
This paper presents a new microstrip dual-mode closed-loop resonator (DMCLR) that is used to design lower insertion loss and better transmission dual-passband filtering antenna. The dual passband center frequencies of the presented filtering antenna are located at foI=5.52 GHz and foII= 6.65 GHz. The presented dual-mode, dual-passband microstrip filtering antenna results are simulated and optimized by using Computer Simulation Technology (CST) software and defected ground structure technique. Three modes of dual-mode resonators have been utilized to design the dual- passband microstrip filtering antenna and compare their results. The presented dual-mode, dual-passband microstrip filtering antenna is established on FR-4 epoxy dielectric material which has a relative permittivity εr= 4.3 which has height thickness h = 1.6 mm and loss tangent tan δ=0.002. Defected Ground Structure (DGS) technique has been utilized to improve the performance of the presented dual-mode, dual-passband microstrip filtering antenna.