Iraqi Journal for Electrical and Electronic Engineering
Login
Iraqi Journal for Electrical and Electronic Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Proofreading Service
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Abstracting and indexing
    • Announcements
    • Contact

Search Results for detection-model

Article
A Hybrid Lung Cancer Model for Diagnosis and Stage Classification from Computed Tomography Images

Abdalbasit Mohammed Qadir, Peshraw Ahmed Abdalla, Dana Faiq Abd

Pages: 266-274

PDF Full Text
Abstract

Detecting pulmonary cancers at early stages is difficult but crucial for patient survival. Therefore, it is essential to develop an intelligent, autonomous, and accurate lung cancer detection system that shows great reliability compared to previous systems and research. In this study, we have developed an innovative lung cancer detection system known as the Hybrid Lung Cancer Stage Classifier and Diagnosis Model (Hybrid-LCSCDM). This system simplifies the complex task of diagnosing lung cancer by categorizing patients into three classes: normal, benign, and malignant, by analyzing computed tomography (CT) scans using a two-part approach: First, feature extraction is conducted using a pre-trained model called VGG-16 for detecting key features in lung CT scans indicative of cancer. Second, these features are then classified using a machine learning technique called XGBoost, which sorts the scans into three categories. A dataset, IQ-OTH/NCCD - Lung Cancer, is used to train and evaluate the proposed model to show its effectiveness. The dataset consists of the three aforementioned classes containing 1190 images. Our suggested strategy achieved an overall accuracy of 98.54%, while the classification precision among the three classes was 98.63%. Considering the accuracy, recall, and precision as well as the F1-score evaluation metrics, the results indicated that when using solely computed tomography scans, the proposed (Hybrid-LCSCDM) model outperforms all previously published models.

Article
Expanding New Covid-19 Data with Conditional Generative Adversarial Networks

Haneen Majid, Khawla Hussein Ali

Pages: 103-110

PDF Full Text
Abstract

COVID-19 is an infectious viral disease that mostly affects the lungs. That quickly spreads across the world. Early detection of the virus boosts the chances of patients recovering quickly worldwide. Many radiographic techniques are used to diagnose an infected person such as X-rays, deep learning technology based on a large amount of chest x-ray images is used to diagnose COVID-19 disease. Because of the scarcity of available COVID-19 X-rays image, the limited COVID-19 Datasets are insufficient for efficient deep learning detection models. Another problem with a limited dataset is that training models suffer from over-fitting, and the predictions are not generalizable to address these problems. In this paper, we developed Conditional Generative Adversarial Networks (CGAN) to produce synthetic images close to real images for the COVID-19 case and traditional augmentation that was used to expand the limited dataset then used to train by Customized deep detection model. The Customized Deep learning model was able to obtain excellent detection accuracy of 97% accurate with only ten epochs. The proposed augmentation outperforms other augmentation techniques. The augmented dataset includes 6988 high-quality and resolution COVID-19 X-rays images. At the same time, the original COVID-19 X-rays images are only 587.

1 - 2 of 2 items

Search Parameters

Journal Logo
Iraqi Journal for Electrical and Electronic Engineering

College of Engineering, University of Basrah

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

Copyright © 2025 College of Engineering, University of Basrah. All rights reserved, including those for text and data mining, AI training, and similar technologies.