Cybersecurity awareness has a huge impact on individuals and an even bigger impact on firms, universities, and institutes to those individuals belong. Consequently, it is essential to explore and asses the factors affecting the awareness level of cybersecurity. More specifically this research study examines the impact of demographic features of individuals on cybersecurity awareness. The Studied literature’s limitations have been addressed and overcome in our research from the variability, and ambiguity aspects. A questionnaire was developed and responses were collected from 613 participants. Reliability and validity tests as well as correlations have been applied for the instruments and data employed in this study. Coefficients were calculated via multiple linear regression for the weights of each of the cybersecurity components. Data reliability test showed that Cronbach’s Alpha value of 0.707 for the used data which is acceptable for research purposes. Results analysis showed r-value for each of the questions is greater than the r table which was 0.07992. Examining the proposed hypotheses showed that there is a difference as the null hypothesis is rejected for one of the demographic features being tested namely, gender. While there is no significant difference when it comes to the other two factors, education level, and age. Using the weight for each of the components, password security, technical behavior, and social influence could provide a solid base for decision-makers to focus on and implement the available resources for gender-specific developments to raise the cybersecurity awareness level..
The reliance on networks and systems has grown rapidly in contemporary times, leading to increased vulnerability to cyber assaults. The Distributed Denial-of-Service (Distributed Denial of Service) attack, a threat that can cause great financial liabilities and reputation damage. To address this problem, Machine Learning (ML) algorithms have gained huge attention, enabling the detection and prevention of DDOS (Distributed Denial of Service) Attacks. In this study, we proposed a novel security mechanism to avoid Distributed Denial of Service attacks. Using an ensemble learning methodology aims to it also can differentiate between normal network traffic and the malicious flood of Distributed Denial of Service attack traffic. The study also evaluates the performance of two well-known ML algorithms, namely, the decision tree and random forest, which were used to execute the proposed method. Tree in defending against Distributed Denial of Service (DDoS) attacks. We test the models using a publicly available dataset called TIME SERIES DATASET FOR DISTRIBUTED DENIAL OF SERVICE ATTACK DETECTION. We compare the performance of models using a list of evaluation metrics developing the Model. This step involves fetching the data, preprocessing it, and splitting it into training and testing subgroups, model selection, and validation. When applied to a database of nearly 11,000 time series; in some cases, the proposed approach manifested promising results and reached an Accuracy (ACC) of up to 100 % in the dataset. Ultimately, this proposed method detects and mitigates distributed denial of service. The solution to securing communication systems from this increasing cyber threat is this: preventing attacks from being successful.