Although the Basic RRT algorithm is considered a traditional search method, it has been widely used in the field of robot path planning (manipulator and mobile robot), especially in the past decade. This algorithm has many features that give it superiority over other methods. On the other hand, the Basic RRT suffers from a bad convergence rate (it takes a long time until finding the goal point), especially in environments with cluttered obstacles, or whose targets are located in narrow passages. Many studies have discussed this problem in recent years. This paper introduces an improved method called (Hybrid RRT-A*) to overcome the shortcomings of the original RRT, specifically slow convergence and cost rate. The heuristic function of A-star algorithm is combined with RRT to decrease tree expansion and guide it towards the goal with less nodes and time. Various experiments have been conducted with different environment scenarios to compare the proposed method with the Basic RRT and A-star under the same conditions, which have shown remarkable performance. The time consumed to find the path of the worst one of these scenarios is about 4.9 seconds, whereas it is 18.3 and 34 for A-star and RRT, respectively.
Adaptive filtering constitutes one of the core technologies in digital signal processing and finds numerous application areas in science as well as in industry. Adaptive filtering techniques are used in a wide range of applications such as noise cancellation. Noise cancellation is a common occurrence in today telecommunication systems. The LMS algorithm which is one of the most efficient criteria for determining the values of the adaptive noise cancellation coefficients are very important in communication systems, but the LMS adaptive noise cancellation suffers response degrades and slow convergence rate under low Signal-to- Noise ratio (SNR) condition. This paper presents an adaptive noise canceller algorithm based fuzzy and neural network. The major advantage of the proposed system is its ease of implementation and fast convergence. The proposed algorithm is applied to noise canceling problem of long distance communication channel. The simulation results showed that the proposed model is effectiveness.
Chaotic Sine-Cosine Algorithms (CSCAs) are new metaheuristic optimization algorithms. However, Chaotic Sine-Cosine Algorithm (CSCAs) are able to manipulate the problems in the standard Sine-Cosine Algorithm (SCA) like, slow convergence rate and falling into local solutions. This manipulation is done by changing the random parameters in the standard Sine-Cosine Algorithm (SCA) with the chaotic sequences. To verify the ability of the Chaotic Sine-Cosine Algorithms (CSCAs) for solving problems with large scale problems. The behaviors of the Chaotic Sine-Cosine Algorithms (CSCAs) were studied under different dimensions 10, 30, 100, and 200. The results show the high quality solutions and the superiority of all Chaotic Sine-Cosine Algorithms (CSCAs) on the standard SCA algorithm for all selecting dimensions. Additionally, different initial values of the chaotic maps are used to study the sensitivity of Chaotic Sine-Cosine Algorithms (CSCAs). The sensitivity test reveals that the initial value 0.7 is the best option for all Chaotic Sine-Cosine Algorithms (CSCAs).