Selection of the best type and most suitable size of conductors is essential for designing and optimizing the distribution network. In this paper, an effective method has been proposed for proper selection and incorporation of conductors in the feed part of a radial electricity distribution network considering the depreciation effect of conductors. Increasing the usability of the electric energy of the power grid for the subscribers has been considered per load increment regarding the development of the country. Optimal selection and reconstruction of conductors in the power distribution radio network have been performed through a smart method for minimizing the costs related to annual losses and investment for renovation of lines by imperialist competitive algorithm (ICA) to improve the productivity of the power distribution network. Backward/forward sweep load flow method has been used to solve the load flow problem in the power distribution networks. The mentioned optimization method has been tested on DAZ feeder in Ghaleganj town as test.
In This paper presents an approach for optimal placement and sizing of fixed capacitor banks and also optimal conductor selection in radial distribution networks for the purpose of economic minimization of loss and enhancement of voltage. The objective function includes the cost of power losses, voltage profile, fixed capacitor banks and also type of conductor selection. Constraints include voltage limit, maximum permissible carrying current of conductors, size of available capacitors and type of conductors. The optimization problem is solved by the Imperialism Competitive algorithm method and the size and site capacitor banks and type of conductors is determined. To demonstrate the validity of the proposed algorithm, computer simulations are carried out on actual power network of Kerman city, Iran and the simulation results are presented and discussed.
Development of distribution systems result in higher system losses and poor voltage regulation. Consequently, an efficient and effective distribution system has become more urgent and important. Hence proper selection of conductors in the distribution system is important as it determines the current density and the resistance of the line. This paper examines the use of different evolutionary algorithms, genetic algorithm (GA), to optimal branch conductor selection in planning radial distribution systems with the objective to minimize the overall cost of annual energy losses and depreciation on the cost of conductors and reliability in order to improve productivity. Furthermore, The Backward-Forward sweep iterative method was adopted to solve the radial load flow analysis. Simulations are carried out on 69-bus radial distribution network using GA approach in order to show the accuracy as well as the efficiency of the proposed solution technique.
In the current scenario, power factor has become an important concern in all industries. Poor power factor gives rise to many problems which result in financial loss of industries and also for the commercial users. The main concern of this work is to improve the usage of real power with respect to reactive power hence improving the power factor. Here we have used the technique of relay switching method with a capacitor so that any drop in power factor can be sensed by the controller and switch the capacitor as required. This will not only help to improve power factor but also demand of electricity supply on utility side will be reduced. The Significance of this work is to build an APFC (Automatic Power Factor Correction) Unit. The APFC appliance calculates the reactive power (KVAR) expended by a system’s load and compensates the lagging PF (power factor) utilizing capacitances from capacitor banks.
Distributed Generation (DG) can help in reducing the cost of electricity to the costumer, relieve network congestion and provide environmentally friendly energy close to load centers. Its capacity is also scalable and it provides voltage support at distribution level. Hence, DG placement and penetration level is an important problem for both the utility and DG owner. The Optimal Power Flow (OPF) has been widely used for both the operation and planning of a power system. The OPF is also suited for deregulated environment. Four different objective functions are considered in this study: (1) Improvement voltage profile (2) minimization of active power loss (3) maximum capacity of conductors (4) maximization of reliability level. The site and size of DG units are assumed as design variables. The results are discussed and compared with those of traditional distribution planning and also with Imperialist competitive algorithm (ICA). Key words: Distributed generation, distribution network planning, multi-objective optimization, and Imperialist competitive algorithm.