Novel Coronavirus (Covid-2019), which first appeared in December 2019 in the Chinese city of Wuhan. It is spreading rapidly in most parts of the world and becoming a global epidemic. It is devastating, affecting public health, daily life, and the global economy. According to the statistics of the World Health Organization on August 11, the number of cases of coronavirus (Covid-2019) reached nearly 17 million, and the number of infections globally distributed among most European countries and most countries of the Asian continent, and the number of deaths from the Corona virus reached 700 thousand people around the world. . It is necessary to detect positive cases as soon as possible in order to prevent the spread of this epidemic and quickly treat infected patients. In this paper, the current literature on the methods used to detect Covid is presented. In these studies, the research that used different techniques of artificial intelligence to detect COVID-19 was reviewed as the convolutionary neural network (ResNet50, ResNet101, ResNet152, InceptionV3 and Inception-ResNetV2) were proposed for the identification of patients infected with coronavirus pneumonia using chest X-ray radiographs By using 5-fold cross validation, three separate binary classifications of four grades (COVID-19, normal (healthy), viral pneumonia and bacterial pneumonia) were introduced. It has been shown that the pre-trained ResNet50 model offers the highest classification performance (96.1 percent accuracy for Dataset-1, 99.5 percent accuracy for Dataset-2 and 99.7 percent accuracy for Dataset-2) based on the performance results obtained.
Brain machine interface provides a communication channel between the human brain and an external device. Brain interfaces are studied to provide rehabilitation to patients with neurodegenerative diseases; such patients loose all communication pathways except for their sensory and cognitive functions. One of the possible rehabilitation methods for these patients is to provide a brain machine interface (BMI) for communication; the BMI uses the electrical activity of the brain detected by scalp EEG electrodes. Classification of EEG signals extracted during mental tasks is a technique for designing a BMI. In this paper a BMI design using five mental tasks from two subjects were studied, a combination of two tasks is studied per subject. An Elman recurrent neural network is proposed for classification of EEG signals. Two feature extraction algorithms using overlapped and non overlapped signal segments are analyzed. Principal component analysis is used for extracting features from the EEG signal segments. Classification performance of overlapping EEG signal segments is observed to be better in terms of average classification with a range of 78.5% to 100%, while the non overlapping EEG signal segments show better classification in terms of maximum classifications.
A robust system that classifies various hand gestures would greatly help those using prosthetic limbs. Recently, emphasis has been placed on extracted features from the High Density - surface Electromyography (HD-sEMG) signals and the size of segmentation windows which augment the recognition accuracy. This paper proposes a hand gestures identification system, in which HD-sEMG signals are employed, and is supported by Force Myography (FMG) signals for this mission. Several feature types have been extracted from FMG and HD-sEMG signals such as MEAN, RMS, MAD, STD, and Variance, these features have been validated under some classifiers such as decision tree (DT), linear discriminant analysis (LDA), support vector machine SVM, and k-nearest neighbor (KNN), in which results showing that MEAN and RMS features are superior to others, while the best classifier is SVM. Several experiments have been achieved by the MATLAB platform to validate the proposed system, in which, a database of HD-sEMG signals comprising 65 isometric hand gestures is employed, where two (8×8) electrodes and 9 force sensors are used to collect the FMG data. This data was derived from 20 intact participants, the first preprocessing step was applied during the recording stage. Ten gestures are chosen to be classified from the 65 hand gestures. Results show the success of the proposed system while the classification accuracy arrived at 99.1%.
The rapid progress in mobile computing necessitates energy efficient solutions to support substantially diverse and complex workloads. Heterogeneous many core platforms are progressively being adopted in contemporary embedded implementations for high performance at low power cost estimations. These implementations experience diverse workloads that offer drastic opportunities to improve energy efficiency. In this paper, we propose a novel per core power gating (PCPG) approach based on workload classifications (WLC) for drastic energy cost minimization in the dark silicon era. Core of our paradigm is to use an integrated sleep mode management based on workloads classification indicated by the performance counters. A number of real applications benchmark (PARSEC) are adopted as a practical example of diverse workloads, including memory- and CPU-intensive ones. In this paper, these applications are exercised on Samsung Exynos 5422 heterogeneous many core system showing up to 37% to 110% energy efficient when compared with our most recent published work, and ondemand governor, respectively. Furthermore, we illustrate low-complexity and low-cost runtime per core power gating algorithm that consistently maximize IPS/Watt at all state space.