The futuristic age requires progress in handwork or even sub-machine dependency and Brain-Computer Interface (BCI) provides the necessary BCI procession. As the article suggests, it is a pathway between the signals created by a human brain thinking and the computer, which can translate the signal transmitted into action. BCI-processed brain activity is typically measured using EEG. Throughout this article, further intend to provide an available and up-to-date review of EEG-based BCI, concentrating on its technical aspects. In specific, we present several essential neuroscience backgrounds that describe well how to build an EEG-based BCI, including evaluating which signal processing, software, and hardware techniques to use. Individuals discuss Brain-Computer Interface programs, demonstrate some existing device shortcomings, and propose some eld’s viewpoints.
The ability of the human brain to communicate with its environment has become a reality through the use of a Brain-Computer Interface (BCI)-based mechanism. Electroencephalography (EEG) has gained popularity as a non-invasive way of brain connection. Traditionally, the devices were used in clinical settings to detect various brain diseases. However, as technology advances, companies such as Emotiv and NeuroSky are developing low-cost, easily portable EEG-based consumer-grade devices that can be used in various application domains such as gaming, education. This article discusses the parts in which the EEG has been applied and how it has proven beneficial for those with severe motor disorders, rehabilitation, and as a form of communicating with the outside world. This article examines the use of the SVM, k-NN, and decision tree algorithms to classify EEG signals. To minimize the complexity of the data, maximum overlap discrete wavelet transform (MODWT) is used to extract EEG features. The mean inside each window sample is calculated using the Sliding Window Technique. The vector machine (SVM), k-Nearest Neighbor, and optimize decision tree load the feature vectors.
Training the user in Brain-Computer Interface (BCI) systems based on brain signals that recorded using Electroencephalography Motor Imagery (EEG-MI) signal is a time-consuming process and causes tiredness to the trained subject, so transfer learning (subject to subject or session to session) is very useful methods of training that will decrease the number of recorded training trials for the target subject. To record the brain signals, channels or electrodes are used. Increasing channels could increase the classification accuracy but this solution costs a lot of money and there are no guarantees of high classification accuracy. This paper introduces a transfer learning method using only two channels and a few training trials for both feature extraction and classifier training. Our results show that the proposed method Independent Component Analysis with Regularized Common Spatial Pattern (ICA-RCSP) will produce about 70% accuracy for the session to session transfer learning using few training trails. When the proposed method used for transfer subject to subject the accuracy was lower than that for session to session but it still better than other methods.