Iraqi Journal for Electrical and Electronic Engineering
Login
Iraqi Journal for Electrical and Electronic Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Proofreading Service
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Abstracting and indexing
    • Announcements
    • Contact

Search Results for brain-computer-interface-bci-

Article
A Systematic Review of Brain-Computer Interface Based EEG

Samaa S. Abdulwahab, Hussain K. Khleaf, Manal H. Jassim

Pages: 81-90

PDF Full Text
Abstract

The futuristic age requires progress in handwork or even sub-machine dependency and Brain-Computer Interface (BCI) provides the necessary BCI procession. As the article suggests, it is a pathway between the signals created by a human brain thinking and the computer, which can translate the signal transmitted into action. BCI-processed brain activity is typically measured using EEG. Throughout this article, further intend to provide an available and up-to-date review of EEG-based BCI, concentrating on its technical aspects. In specific, we present several essential neuroscience backgrounds that describe well how to build an EEG-based BCI, including evaluating which signal processing, software, and hardware techniques to use. Individuals discuss Brain-Computer Interface programs, demonstrate some existing device shortcomings, and propose some eld’s viewpoints.

Article
EEG Motor-Imagery BCI System Based on Maximum Overlap Discrete Wavelet Transform (MODWT) and Machine learning algorithm

Samaa S. Abdulwahab, Hussain K. Khleaf, Manal H. Jassim

Pages: 38-45

PDF Full Text
Abstract

The ability of the human brain to communicate with its environment has become a reality through the use of a Brain-Computer Interface (BCI)-based mechanism. Electroencephalography (EEG) has gained popularity as a non-invasive way of brain connection. Traditionally, the devices were used in clinical settings to detect various brain diseases. However, as technology advances, companies such as Emotiv and NeuroSky are developing low-cost, easily portable EEG-based consumer-grade devices that can be used in various application domains such as gaming, education. This article discusses the parts in which the EEG has been applied and how it has proven beneficial for those with severe motor disorders, rehabilitation, and as a form of communicating with the outside world. This article examines the use of the SVM, k-NN, and decision tree algorithms to classify EEG signals. To minimize the complexity of the data, maximum overlap discrete wavelet transform (MODWT) is used to extract EEG features. The mean inside each window sample is calculated using the Sliding Window Technique. The vector machine (SVM), k-Nearest Neighbor, and optimize decision tree load the feature vectors.

Article
Session to Session Transfer Learning Method Using Independent Component Analysis with Regularized Common Spatial Patterns for EEG-MI Signals

Zaineb M. Alhakeem, Ramzy S. Ali

Pages: 13-27

PDF Full Text
Abstract

Training the user in Brain-Computer Interface (BCI) systems based on brain signals that recorded using Electroencephalography Motor Imagery (EEG-MI) signal is a time-consuming process and causes tiredness to the trained subject, so transfer learning (subject to subject or session to session) is very useful methods of training that will decrease the number of recorded training trials for the target subject. To record the brain signals, channels or electrodes are used. Increasing channels could increase the classification accuracy but this solution costs a lot of money and there are no guarantees of high classification accuracy. This paper introduces a transfer learning method using only two channels and a few training trials for both feature extraction and classifier training. Our results show that the proposed method Independent Component Analysis with Regularized Common Spatial Pattern (ICA-RCSP) will produce about 70% accuracy for the session to session transfer learning using few training trails. When the proposed method used for transfer subject to subject the accuracy was lower than that for session to session but it still better than other methods.

1 - 3 of 3 items

Search Parameters

Journal Logo
Iraqi Journal for Electrical and Electronic Engineering

College of Engineering, University of Basrah

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

Copyright © 2025 College of Engineering, University of Basrah. All rights reserved, including those for text and data mining, AI training, and similar technologies.