In recent years, artificial intelligence techniques such as wavelet neural network have been applied to control the speed of the BLDC motor drive. The BLDC motor is a multivariable and nonlinear system due to variations in stator resistance and moment of inertia. Therefore, it is not easy to obtain a good performance by applying conventional PID controller. The Recurrent Wavelet Neural Network (RWNN) is proposed, in this paper, with PID controller in parallel to produce a modified controller called RWNN-PID controller, which combines the capability of the artificial neural networks for learning from the BLDC motor drive and the capability of wavelet decomposition for identification and control of dynamic system and also having the ability of self-learning and self-adapting. The proposed controller is applied for controlling the speed of BLDC motor which provides a better performance than using conventional controllers with a wide range of speed. The parameters of the proposed controller are optimized using Particle Swarm Optimization (PSO) algorithm. The BLDC motor drive with RWNN-PID controller through simulation results proves a better in the performance and stability compared with using conventional PID and classical WNN-PID controllers.
This paper presents a low-cost Brushless DC (BLDC) motor drive system with fewer switches. BLDC motors are widely utilized in variable speed drives and industrial applications due to their high efficiency, high power factor, high torque, low maintenance, and ease of control. The proposed control strategy for robust speed control is dependent on two feedback signals which are speed sensor loop which is regulated by Sliding Mode Controller (SMC) and current sensor loop which is regulated by Proportional-Integral (PI) for boosting the drive system adaptability. In this work, the BLDC motor is driven by a four-switch three-phase inverter emulating a three-phase six switch inverter, to reduce switching losses with a low complex control strategy. In order to reach a robust performance of the proposed control strategy, the Lévy Flight Distribution (LFD) technique is used to tune the gains of PI and SMC parameters. The Integral Time Absolute Error (ITAE) is used as a fitness function. The simulation results show the SMC with LFD technique has superiority over conventional SMC and optimization PI controller in terms of fast-tracking to the desired value, reduction speed error to the zero value, and low overshoot under sudden change conditions.