Fuzzy PID controller design is still a complex task due to the involvement of a large number of parameters in defining the fuzzy rule base. To reduce the huge number of fuzzy rules required in the normal design for fuzzy PID controller, the fuzzy PID controller is represented as Proportional-Derivative Fuzzy (PDF) controller and Proportional-Integral Fuzzy (PIF) controller connected in parallel through a summer. The PIF controller design has been simplified by replacing the PIF controller by PDF controller with accumulating output. In this paper, the modified Fuzzy PID controller design for bench-top helicopter has been presented. The proposed Fuzzy PID controller has been described using Very High Speed Integrated Circuit Hardware Description Language (VHDL) and implemented using the Field Programmable Gate Array (FPGA) board. The bench-top helicopter has been used to test the proposed controller. The results have been compared with the conventional PID controller and Internal Model Control Tuned PID (IMC-PID) Controller. Simulation results show that the modified Fuzzy PID controller produces superior control performance than the other two controllers in handling the nonlinearity of the helicopter system. The output signal from the FPGA board is compared with the output of the modified Fuzzy PID controller to show that the FPGA board works like the Fuzzy PID controller. The result shows that the plant responses with the FPGA board are much similar to the plant responses when using simulation software based controller.
Unmanned aerial vehicles (UAV), have enormous important application in many fields. Quanser three degree of freedom (3-DOF) helicopter is a benchmark laboratory model for testing and validating the validity of various flight control algorithms. The elevation control of a 3-DOF helicopter is a complex task due to system nonlinearity, uncertainty and strong coupling dynamical model. In this paper, an RBF neural network model reference adaptive controller has been used, employing the grate approximation capability of the neural network to match the unknown and nonlinearity in order to build a strong MRAC adaptive control algorithm. The control law and stable neural network updating law are determined using Lyapunov theory.