Iraqi Journal for Electrical and Electronic Engineering
Login
Iraqi Journal for Electrical and Electronic Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Proofreading Service
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Abstracting and indexing
    • Announcements
    • Contact

Search Results for bench-top-helicopter

Article
FPGA Based Modified Fuzzy PID Controller for Pitch Angle of Bench-top Helicopter

Ammar A. Aldair

Pages: 12-24

PDF Full Text
Abstract

Fuzzy PID controller design is still a complex task due to the involvement of a large number of parameters in defining the fuzzy rule base. To reduce the huge number of fuzzy rules required in the normal design for fuzzy PID controller, the fuzzy PID controller is represented as Proportional-Derivative Fuzzy (PDF) controller and Proportional-Integral Fuzzy (PIF) controller connected in parallel through a summer. The PIF controller design has been simplified by replacing the PIF controller by PDF controller with accumulating output. In this paper, the modified Fuzzy PID controller design for bench-top helicopter has been presented. The proposed Fuzzy PID controller has been described using Very High Speed Integrated Circuit Hardware Description Language (VHDL) and implemented using the Field Programmable Gate Array (FPGA) board. The bench-top helicopter has been used to test the proposed controller. The results have been compared with the conventional PID controller and Internal Model Control Tuned PID (IMC-PID) Controller. Simulation results show that the modified Fuzzy PID controller produces superior control performance than the other two controllers in handling the nonlinearity of the helicopter system. The output signal from the FPGA board is compared with the output of the modified Fuzzy PID controller to show that the FPGA board works like the Fuzzy PID controller. The result shows that the plant responses with the FPGA board are much similar to the plant responses when using simulation software based controller.

Article
Hover Control for Helicopter Using Neural Network-Based Model Reference Adaptive Controller

Abdul-Basset A. Al-Hussein

Pages: 67-72

PDF Full Text
Abstract

Unmanned aerial vehicles (UAV), have enormous important application in many fields. Quanser three degree of freedom (3-DOF) helicopter is a benchmark laboratory model for testing and validating the validity of various flight control algorithms. The elevation control of a 3-DOF helicopter is a complex task due to system nonlinearity, uncertainty and strong coupling dynamical model. In this paper, an RBF neural network model reference adaptive controller has been used, employing the grate approximation capability of the neural network to match the unknown and nonlinearity in order to build a strong MRAC adaptive control algorithm. The control law and stable neural network updating law are determined using Lyapunov theory.

1 - 2 of 2 items

Search Parameters

Journal Logo
Iraqi Journal for Electrical and Electronic Engineering

College of Engineering, University of Basrah

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

Copyright © 2025 College of Engineering, University of Basrah. All rights reserved, including those for text and data mining, AI training, and similar technologies.