Iraqi Journal for Electrical and Electronic Engineering
Login
Iraqi Journal for Electrical and Electronic Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Proofreading Service
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Abstracting and indexing
    • Announcements
    • Contact

Search Results for artificial-neural-networks

Article
Integration of Fuzzy Logic and Neural Networks for Enhanced MPPT in PV Systems Under Partial Shading Conditions

Hayder Dakhil Atiya, Mohamed Boukattaya, Fatma Ben Salem

Pages: 1-15

PDF Full Text
Abstract

Efficient energy collection from photovoltaic (PV) systems in environments that change is still a challenge, especially when partial shading conditions (PSC) come into play. This research shows a new method called Maximum Power Point Tracking (MPPT) that uses fuzzy logic and neural networks to make PV systems more flexible and accurate when they are exposed to PSC. Our method uses a fuzzy logic controller (FLC) that is specifically made to deal with uncertainty and imprecision. This is different from other MPPT methods that have trouble with the nonlinearity and transient dynamics of PSC. At the same time, an artificial neural network (ANN) is taught to guess where the Global Maximum Power Point (GMPP) is most likely to be by looking at patterns of changes in irradiance and temperature from the past. The fuzzy controller fine-tunes the ANN’s prediction, ensuring robust and precise MPPT operation. We used MATLAB/Simulink to run a lot of simulations to make sure our proposed method would work. The results showed that combining fuzzy logic with neural networks is much better than using traditional MPPT algorithms in terms of speed, stability, and response to changing shading patterns. This innovative technique proposes a dual-layered control mechanism where the robustness of fuzzy logic and the predictive power of neural networks converge to form a resilient and efficient MPPT system, marking a significant advancement in PV technology.

Article
A Novel Quantum-Behaved Future Search Algorithm for the Detection and Location of Faults in Underground Power Cables Using ANN

Hamzah Abdulkhaleq Naji, Rashid Ali Fayadh, Ammar Hussein Mutlag

Pages: 226-244

PDF Full Text
Abstract

This article introduces a novel Quantum-inspired Future Search Algorithm (QFSA), an innovative amalgamation of the classical Future Search Algorithm (FSA) and principles of quantum mechanics. The QFSA was formulated to enhance both exploration and exploitation capabilities, aiming to pinpoint the optimal solution more effectively. A rigorous evaluation was conducted using seven distinct benchmark functions, and the results were juxtaposed with five renowned algorithms from existing literature. Quantitatively, the QFSA outperformed its counterparts in a majority of the tested scenarios, indicating its superior efficiency and reliability. In the subsequent phase, the utility of QFSA was explored in the realm of fault detection in underground power cables. An Artificial Neural Network (ANN) was devised to identify and categorize faults in these cables. By integrating QFSA with ANN, a hybrid model, QFSA-ANN, was developed to optimize the network’s structure. The dataset, curated from MATLAB simulations, comprised diverse fault types at varying distances. The ANN structure had two primary units: one for fault location and another for detection. These units were fed with nine input parameters, including phase- currents and voltages, current and voltage values from zero sequences, and voltage angles from negative sequences. The optimal architecture of the ANN was determined by varying the number of neurons in the first and second hidden layers and fine-tuning the learning rate. To assert the efficacy of the QFSA-ANN model, it was tested under multiple fault conditions. A comparative analysis with established methods in the literature further accentuated its robustness in terms of fault detection and location accuracy. this research not only augments the field of search algorithms with QFSA but also showcases its practical application in enhancing fault detection in power distribution systems. Quantitative metrics, detailed in the main article, solidify the claim of QFSA-ANN’s superiority over conventional methods.

Article
Automated Brain Tumor Detection Based on Feature Extraction from The MRI Brain Image Analysis

Ban Mohammed Abd Alreda, Hussain Kareem Khalif, Thamir Rashed Saeid

Pages: 58-67

PDF Full Text
Abstract

The brain tumors are among the common deadly illness that requires early, reliable detection techniques, current identification, and imaging methods that depend on the decisions of neuro-specialists and radiologists who can make possible human error. This takes time to manually identify a brain tumor. This work aims to design an intelligent model capable of diagnosing and predicting the severity of magnetic resonance imaging (MRI) brain tumors to make an accurate decision. The main contribution is achieved by adopting a new multiclass classifier approach based on a collected real database with new proposed features that reflect the precise situation of the disease. In this work, two artificial neural networks (ANNs) methods namely, Feed Forward Back Propagation neural network (FFBPNN) and support vector machine (SVM), used to expectations the level of brain tumors. The results show that the prediction result by the (FFBPN) network will be better than the other method in time record to reach an automatic classification with classification accuracy was 97% for 3-class which is considered excellent accuracy. The software simulation and results of this work have been implemented via MATLAB (R2012b).

Article
A comparative Study of Forecasting the Electrical Demand in Basra city using Box-Jenkins and Modern Intelligent Techniques

Khadeega Abd Al-zahra, Khulood Moosa, Basil H. Jasim

Pages: 110-123

PDF Full Text
Abstract

The electrical consumption in Basra is extremely nonlinear; so forecasting the monthly required of electrical consumption in this city is very useful and critical issue. In this Article an intelligent techniques have been proposed to predict the demand of electrical consumption of Basra city. Intelligent techniques including ANN and Neuro-fuzzy structured trained. The result obtained had been compared with conventional Box-Jenkins models (ARIMA models) as a statistical method used in time series analysis. ARIMA (Autoregressive integrated moving average) is one of the statistical models that utilized in time series prediction during the last several decades. Neuro- Fuzzy Modeling was used to build the prediction system, which give effective in improving the predict operation efficiency. To train the prediction system, a historical data were used. The data representing the monthly electric consumption in Basra city during the period from (Jan 2005 to Dec 2011). The data utilized to compare the proposed model and the forecasting of demand for the subsequent two years (Jan 2012-Dec 2013). The results give the efficiency of proposed methodology and show the good performance of the proposed Neuro-fuzzy method compared with the traditional ARIMA method.

Article
Speed Control of BLDC Motor Based on Recurrent Wavelet Neural Network

Adel A. Obed, Ameer L. Saleh

Pages: 118-129

PDF Full Text
Abstract

In recent years, artificial intelligence techniques such as wavelet neural network have been applied to control the speed of the BLDC motor drive. The BLDC motor is a multivariable and nonlinear system due to variations in stator resistance and moment of inertia. Therefore, it is not easy to obtain a good performance by applying conventional PID controller. The Recurrent Wavelet Neural Network (RWNN) is proposed, in this paper, with PID controller in parallel to produce a modified controller called RWNN-PID controller, which combines the capability of the artificial neural networks for learning from the BLDC motor drive and the capability of wavelet decomposition for identification and control of dynamic system and also having the ability of self-learning and self-adapting. The proposed controller is applied for controlling the speed of BLDC motor which provides a better performance than using conventional controllers with a wide range of speed. The parameters of the proposed controller are optimized using Particle Swarm Optimization (PSO) algorithm. The BLDC motor drive with RWNN-PID controller through simulation results proves a better in the performance and stability compared with using conventional PID and classical WNN-PID controllers.

1 - 5 of 5 items

Search Parameters

Journal Logo
Iraqi Journal for Electrical and Electronic Engineering

College of Engineering, University of Basrah

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

Copyright © 2025 College of Engineering, University of Basrah. All rights reserved, including those for text and data mining, AI training, and similar technologies.