Iraqi Journal for Electrical and Electronic Engineering
Login
Iraqi Journal for Electrical and Electronic Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Proofreading Service
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Abstracting and indexing
    • Announcements
    • Contact

Search Results for artificial-neural-network

Article
Transient stability Assessment using Artificial Neural Network Considering Fault Location

nan P.K.Olulope, nan K.A.Folly, nan S.Chowdhury, nan S.P.Chowdhury

Pages: 67-72

PDF Full Text
Abstract

This paper describes the capability of artificial neural network for predicting the critical clearing time of power system. It combines the advantages of time domain integration schemes with artificial neural network for real time transient stability assessment. The training of ANN is done using selected features as input and critical fault clearing time (CCT) as desire target. A single contingency was applied and the target CCT was found using time domain simulation. Multi layer feed forward neural network trained with Levenberg Marquardt (LM) back propagation algorithm is used to provide the estimated CCT. The effectiveness of ANN, the method is demonstrated on single machine infinite bus system (SMIB). The simulation shows that ANN can provide fast and accurate mapping which makes it applicable to real time scenario.

Article
Five-Component Load Forecast in Residential Sector Using Smart Methods

Yamama A. I. Al-Nasiri, Hussein Al-bayaty, Majid S.M. Al-Hafidh

Pages: 132-138

PDF Full Text
Abstract

The electrical load is affected by the weather conditions in many countries as well as in Iraq. The weather-sensitive electrical load is, usually, divided into two components, a weather-sensitive component, and a weather-insensitive component. The research provides a method for separating the weather-sensitive electrical load into five components. and aims to prove the efficiency of the five-component load Forecasting model. The artificial neural network was used to predict the weather-sensitive electrical load using the MATLAB R17a software. Weather data and loads were used for one year for Mosul City. The performance of the artificial neural network was evaluated using the mean squared error and the mean absolute percentage error. The results indicate the accuracy of the prediction model used, MAPE equal to 0.0402.

Article
Short Term Load Forecasting Based Artificial Neural Network

Adel M. Dakhil

Pages: 42-47

PDF Full Text
Abstract

Present study develops short term electric load forecasting using neural network; based on historical series of power demand the neural network chosen for this network is feed forward network, this neural network has five input variables ( hour of the day, the day of the week, the load for the previous hour, the load of the pervious day, the load for the previous week). Short term load forecast is very important due to accurate for power system operation and analysis system security among other mandatory function. The trained artificial neural network shows good accuracy and robust in forecasting future load demands for the daily operation, mean absolute percentage error (MAPE) was calculated and it is maximum value is 0.75% in load forecasting on Monday.

Article
A k-Nearest Neighbor Based Algorithm for Human Arm Movements Recognition Using EMG Signals

Mohammed Z. Al-Faiz, MIEEE, Abduladhem A.Ali, Abbas H. Miry

Pages: 158-166

PDF Full Text
Abstract

In a human-robot interface, the prediction of motion, which is based on context information of a task, has the potential to improve the robustness and reliability of motion classification to control human-assisting manipulators. The objective of this work is to achieve better classification with multiple parameters using K-Nearest Neighbor (K-NN) for different movements of a prosthetic arm. The proposed structure is simulated using MATLAB Ver. R2009a, and satisfied results are obtained by comparing with the conventional recognition method using Artificial Neural Network (ANN). Results show the proposed K-NN technique achieved a uniformly good performance with respect to ANN in terms of time, which is important in recognition systems, and better accuracy in recognition when applied to lower Signal-to-Noise Ratio (SNR) signals.

Article
A Novel Quantum-Behaved Future Search Algorithm for the Detection and Location of Faults in Underground Power Cables Using ANN

Hamzah Abdulkhaleq Naji, Rashid Ali Fayadh, Ammar Hussein Mutlag

Pages: 226-244

PDF Full Text
Abstract

This article introduces a novel Quantum-inspired Future Search Algorithm (QFSA), an innovative amalgamation of the classical Future Search Algorithm (FSA) and principles of quantum mechanics. The QFSA was formulated to enhance both exploration and exploitation capabilities, aiming to pinpoint the optimal solution more effectively. A rigorous evaluation was conducted using seven distinct benchmark functions, and the results were juxtaposed with five renowned algorithms from existing literature. Quantitatively, the QFSA outperformed its counterparts in a majority of the tested scenarios, indicating its superior efficiency and reliability. In the subsequent phase, the utility of QFSA was explored in the realm of fault detection in underground power cables. An Artificial Neural Network (ANN) was devised to identify and categorize faults in these cables. By integrating QFSA with ANN, a hybrid model, QFSA-ANN, was developed to optimize the network’s structure. The dataset, curated from MATLAB simulations, comprised diverse fault types at varying distances. The ANN structure had two primary units: one for fault location and another for detection. These units were fed with nine input parameters, including phase- currents and voltages, current and voltage values from zero sequences, and voltage angles from negative sequences. The optimal architecture of the ANN was determined by varying the number of neurons in the first and second hidden layers and fine-tuning the learning rate. To assert the efficacy of the QFSA-ANN model, it was tested under multiple fault conditions. A comparative analysis with established methods in the literature further accentuated its robustness in terms of fault detection and location accuracy. this research not only augments the field of search algorithms with QFSA but also showcases its practical application in enhancing fault detection in power distribution systems. Quantitative metrics, detailed in the main article, solidify the claim of QFSA-ANN’s superiority over conventional methods.

Article
Variable Speed Controller of Wind Generation System using Model predictive Control and NARMA Controller

Raheel Jawad, Majda Ahmed, Hussein M. Salih, Yasser Ahmed Mahmood

Pages: 43-52

PDF Full Text
Abstract

This paper applied an artificial intelligence technique to control Variable Speed in a wind generator system. One of these techniques is an offline Artificial Neural Network (ANN-based system identification methodology, and applied conventional proportional-integral-derivative (PID) controller). ANN-based model predictive (MPC) and remarks linearization (NARMA-L2) controllers are designed, and employed to manipulate Variable Speed in the wind technological knowledge system. All parameters of controllers are set up by the necessities of the controller's design. The effects show a neural local (NARMA-L2) can attribute even higher than PID. The settling time, upward jab time, and most overshoot of the response of NARMA-L2 is a notable deal an awful lot less than the corresponding factors for the accepted PID controller. The conclusion from this paper can be to utilize synthetic neural networks of industrial elements and sturdy manageable to be viewed as a dependable desire to normal modeling, simulation, and manipulation methodologies. The model developed in this paper can be used offline to structure and manufacturing points of conditions monitoring, faults detection, and troubles shooting for wind generation systems.

Article
Integration of Fuzzy Logic and Neural Networks for Enhanced MPPT in PV Systems Under Partial Shading Conditions

Hayder Dakhil Atiya, Mohamed Boukattaya, Fatma Ben Salem

Pages: 1-15

PDF Full Text
Abstract

Efficient energy collection from photovoltaic (PV) systems in environments that change is still a challenge, especially when partial shading conditions (PSC) come into play. This research shows a new method called Maximum Power Point Tracking (MPPT) that uses fuzzy logic and neural networks to make PV systems more flexible and accurate when they are exposed to PSC. Our method uses a fuzzy logic controller (FLC) that is specifically made to deal with uncertainty and imprecision. This is different from other MPPT methods that have trouble with the nonlinearity and transient dynamics of PSC. At the same time, an artificial neural network (ANN) is taught to guess where the Global Maximum Power Point (GMPP) is most likely to be by looking at patterns of changes in irradiance and temperature from the past. The fuzzy controller fine-tunes the ANN’s prediction, ensuring robust and precise MPPT operation. We used MATLAB/Simulink to run a lot of simulations to make sure our proposed method would work. The results showed that combining fuzzy logic with neural networks is much better than using traditional MPPT algorithms in terms of speed, stability, and response to changing shading patterns. This innovative technique proposes a dual-layered control mechanism where the robustness of fuzzy logic and the predictive power of neural networks converge to form a resilient and efficient MPPT system, marking a significant advancement in PV technology.

Article
Modeling and Control of Impressed Current Cathodic Protection (ICCP) System

Marwah S.Hashim, R. Nawal Jasim Hamadi, Khearia A.Mohammed A.

Pages: 80-88

PDF Full Text
Abstract

The corrosion of metallic structures buried in soil or submerged in water which became a problem of worldwide significance and causes most of the deterioration in petroleum industry can be controlled by cathodic protection (CP).CP is a popular technique used to minimize the corrosion of metals in a variety of large structures. To prevent corrosion, voltage between the protection metal and the auxiliary anode has to be controlled on a desired level. In this study two types of controllers will be used to set a pipeline potential at required protection level. The first one is a conventional Proportional-Integral-Derivative (PID) controller and the second are intelligent controllers (fuzzy and neural controllers).The results were simulated and implemented using MATLAB R 2010a program which offers predefined functions to develop PID, fuzzy and neural control systems.

Article
Estimation of the Consumer Peak Load for the Iraqi Distribution System Using intelligent Methods

M. A. Al-Nama, M. S. Al-Hafid, A. S. Al-Fahadi

Pages: 180-184

PDF Full Text
Abstract

The drastic increase of residential load consumption in recent years result in over loading feeder lines and transformers for the Iraqi northern area distribution system especially in the city of Mosul. Solution for this problem require up to date research consumers load study to find the proper solution to stop excess overload in the transformers and the feeders. This paper include the regional survey for samples of consumers representing typical types of different standard of living and energy consumption by distributing questioners contain list of information such as load type in daily use. Also current readings are recorded for the individual consumer for the months of the year 2006. In addition to those readings, energy consumption is recorded once every two months. The registered readings are used in conjunction with the list of questionnaires to find a sample (for different loads) that coincide with the list of questionnaires for current and energy readings. Resulting in the feasibility of using the sample to know the peak value of current for any consumer even if he is not included in the list of questionnaires and for any new consumer, since it become possible to decide the size of the transformers and feeder lines, to overcome the problem of overloading in any part of the distribution system. The Artificial Neural Network (ANN) is used in this paper to find the above mentioned sample.

1 - 9 of 9 items

Search Parameters

Journal Logo
Iraqi Journal for Electrical and Electronic Engineering

College of Engineering, University of Basrah

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

Copyright © 2025 College of Engineering, University of Basrah. All rights reserved, including those for text and data mining, AI training, and similar technologies.