Inductors play a major role in the power electronics domain, particularly in DC-DC converter design. The objective of this paper is to reach inductance value by means of fewer turns, using Litz wire wound on a ferrite core. In the manufacture of inductors, the key aspects of the design criteria include the choice of the core material, the type of copper coil and insulation materials, and their overall size. Taking into consideration the design parameters with no compromises on performance, Litz wire with the least turns is introduced into an inductor in certain DC-DC converters. Once the DC settled voltage is reached, it is given to a single-phase inverter for loading and application measures. This approach provides a small-level inductor design for maximized efficiency with improved thermal behavior. The hardware model for the proposed method has been developed using a DC-DC converter fed with a single-phase inverter model. The proposed DC-DC converter has been tested, performance-wise, by applying different load levels. It is observed, from the results, that the Litz wire-based approach achieves maximum efficiency with improved thermal behavior.
Upkeeping the Battery State-Of-Charge (SoC) and its life are of great significance in Battery Electric Vehicle (BEV) & Hybrid Electric Vehicles (HEV). This is possible by integrating Solar Photovoltaic Panels (PPs) on the Roof-top of the BEVs & HEVs. However, unlike Solar Powered Vehicle Charging stations and other PV applications where the solar panels are installed in such a way to extract the maximum Photon energy incident on the panel, vehicle Roof-top mount Solar PPs face many challenges in extracting maximum Power due to partial shading issues especially under dynamic conditions when passing under trees, high rise buildings and cloud passages. This paper proposes a new strategy called “Super-capacitor Assisted Photovoltaic Array”. In which Photovoltaic Modules are integrated with Super-capacitors to improve the transient performance of the Photovoltaic Array system. The design of proposed Super-capacitor Assisted PV array is validated & its performance is compared with conventional PV array in Matlab/ Simulink environment.