A new algorithm for the localization and identification of multi-node systems has been introduced in this paper; this algorithm is based on the idea of using a beacon provided with a distance sensor and IR sensor to calculate the location and to know the identity of each visible node during scanning. Furthermore, the beacon is fixed at middle of the frame bottom edge for a better vision of nodes. Any detected node will start to communicate with the neighboring nodes by using the IR sensors distributed on its perimeter; that information will be used later for the localization of invisible nodes. The performance of this algorithm is shown by the implementation of several simulations .
In this paper, a new algorithm called table-based matching for multi-robot (node) that used for localization and orientation are suggested. The environment is provided with two distance sensors fixed on two beacons at the bottom corners of the frame. These beacons have the ability to scan the environment and estimate the location and orientation of the visible nodes and save the result in matrices which are used later to construct a visible node table. This table is used for matching with visible-robot table which is constructed from the result of each robot scanning to its neighbors with a distance sensor that rotates at 360⁰; at this point, the location and identity of all visible nodes are known. The localization and orientation of invisible robots rely on the matching of other tables obtained from the information of visible robots. Several simulations implementation are experienced on a different number of nodes to submit the performance of this introduced algorithm.