Iraqi Journal for Electrical and Electronic Engineering
Login
Iraqi Journal for Electrical and Electronic Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Proofreading Service
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Abstracting and indexing
    • Announcements
    • Contact

Search Results for Najah F. Jasim

Article
Adaptive Sliding Mode Control Design for a Class of Nonlinear Systems with Unknown Dead Zone of Unknown Bounds Design

Ibrahim Fahad Jasim, Najah Fahad Jasim

Pages: 7-11

PDF Full Text
Abstract

The control problem for a class of a nonlinear systems that contain the coupling of unmeasured states and unknown parameters is addressed. The system actuation is assumed to suffer from unknown dead zone nonlinearity. The parameters bounds of the unknown dead zone to be considered are unknown. Adaptive sliding mode controller, unmeasured states observer, and unknown parameters estimators are suggested such that global stability is achieved. Simulation for a single link mechanical system with unknown dead zone and friction torque is implemented for proving the efficacy of the suggested scheme.

Article
Pitch Angle Regulation of Floating Wind Turbines with Dynamic Uncertainty and External Disturbances

Najah F. Jasim

Pages: 50-54

PDF Full Text
Abstract

This paper addresses the problem of pitch angle regulation of floating wind turbines with the presence of dynamic uncertainty and unknown disturbances usually encountered in offshore wind turbines, where two control laws are derived for two different cases to continuously achieve zero pitch angle for the floating turbine. In the first case, the time- varying unknown coefficients that characterize the turbine's dynamics are assumed reasonably bounded by known functions, where robust controller is designed in terms of these known functions to achieve zero pitch angle for the turbine with exponential rate of convergence. While in the second case, the turbine's dynamics are considered to be characterized by unknown coefficients of unknown bounds. In this case, a sliding- mode adaptive controller is constructed in terms of estimated values for the unknown coefficients, where these values are continuously updated by adaptive laws associated with the proposed controller to ensure asymptotic convergence to zero for the turbine's pitch angle. Simulations are performed to demonstrate the validity of the proposed controllers to achieve the required regulation objective.

1 - 2 of 2 items

Search Parameters

Journal Logo
Iraqi Journal for Electrical and Electronic Engineering

College of Engineering, University of Basrah

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

Copyright © 2025 College of Engineering, University of Basrah. All rights reserved, including those for text and data mining, AI training, and similar technologies.