Real-time detection and recognition systems for vehicle license plates present a significant design and implementation challenge, arising from factors such as low image resolution, data noise, and various weather and lighting conditions.This study presents an efficient automated system for the identification and classification of vehicle license plates, utilizing deep learning techniques. The system is specifically designed for Iraqi vehicle license plates, adapting to various backgrounds, different font sizes, and non-standard formats. The proposed system has been designed to be integrated into an automated entrance gate security system. The system’s framework encompasses two primary phases: license plate detection (LPD) and character recognition (CR). The utilization of the advanced deep learning technique YOLOv4 has been implemented for both phases owing to its adeptness in real-time data processing and its remarkable precision in identifying diminutive entities like characters on license plates. In the LPD phase, the focal point is on the identification and isolation of license plates from images, whereas the CR phase is dedicated to the identification and extraction of characters from the identified license plates. A substantial dataset comprising Iraqi vehicle images captured under various lighting and weather circumstances has been amassed for the intention of both training and testing. The system attained a noteworthy accuracy level of 95.07%, coupled with an average processing time of 118.63 milliseconds for complete end-to-end operations on a specified dataset, thus highlighting its suitability for real-time applications. The results suggest that the proposed system has the capability to significantly enhance the efficiency and reliability of vehicle license plate recognition in various environmental conditions, thus making it suitable for implementation in security and traffic management contexts.
Soft robotics is a modern technique that allows robots to have more capabilities than conventional rigid robots. Pneumatic Muscle Actuators (PMAs), also known as McKibben actuators, are an example of soft actuators. This research covered the design and production of a pneumatic robot end effector. Smooth, elastic, flexible, and soft qualities materials have contributed to the creation of Soft Robot End-Effector (SREE). To give SREE compliance, it needs to handle delicate objects while allowing it to adapt to its surroundings safely. The research focuses on the variable stiffness SREE’s inspiration design, construction, and manufacturing. As a result, a new four-fingered variable stiffness soft robot end effector was created. SREE has been designed using two types of PMAs: Contractor PMAs (CPMAs) and Extensor PMAs (EPMAs). Through tendons and Contractor PMAs, fingers can close and open. SREE was tested and put into practice to handle various object types. The innovative movement of the suggested SREE allows it to grip with only two fingers and open and close its grasp with all of its fingers.