This paper deals with the application of Fuzzy-Neural Networks (FNNs) in multi-machine system control applied on hot steel rolling. The electrical drives that used in rolling system are a set of three-phase induction motors (IM) controlled by indirect field-oriented control (IFO). The fundamental goal of this type of control is to eliminate the coupling influence though the coordinate transformation in order to make the AC motor behaves like a separately excited DC motor. Then use Fuzzy-Neural Network in control the IM speed and the rolling plant. In this work MATLAB/SIMULINK models are proposed and implemented for the entire structures. Simulation results are presented to verify the effectiveness of the proposed control schemes. It is found that the proposed system is robust in that it eliminates the disturbances considerably.
This work deals with the simulation model of multi-machines system as cold rolling mill is considered as application. Drivers of rolling system are a set of DC motors, which have extend applications in factories as aluminum rolling. Interconnection of multi DC motors in such a way that they are synchronized in their rotational speed. In cold rolling, the accuracy of the strip exit thickness is a very important factors. To realize accuracy in the strip exit thickness, Automatic Gauge Control system is used. In this paper MATLAB/SIMULINK models are proposed and implemented for the entire structures. Simulation results were presented to verify proposed model of cold rolling mill.