Iraqi Journal for Electrical and Electronic Engineering
Login
Iraqi Journal for Electrical and Electronic Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Proofreading Service
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Abstracting and indexing
    • Announcements
    • Contact

Search Results for Israa Sabri A. AL-Forati

Article
Practical Implementation of an Indoor Robot Localization and Identification System using an Array of Anchor Nodes

Israa Sabri A. AL-Forati, Abdulmuttalib T. Rashid

Pages: 9-16

PDF Full Text
Abstract

This paper proposes a low-cost Light Emitting Diodes (LED) system with a novel arrangement that allows an indoor multi- robot localization. The proposed system uses only a matrix of low-cost LED installed uniformly on the ground of an environment and low-cost Light Dependent Resistor (LDR), each equipped on bottom of the robot for detection. The matrix of LEDs which are driven by a modified binary search algorithm are used as active beacons. The robot localizes itself based on the signals it receives from a group of neighbor LEDs. The minimum bounded circle algorithm is used to draw a virtual circle from the information collected from the neighbor LEDs and the center of this circle represents the robot’s location. The propose system is practically implemented on an environment with (16*16) matrix of LEDs. The experimental results show good performance in the localization process.

Article
Robotics Path Planning Algorithms using Low-Cost IR Sensor

Israa Sabri A. AL-Forati, Abdulmuttalib T. Rashid

Pages: 44-52

PDF Full Text
Abstract

A robot is a smart machine that can help people in their daily lives and keep everyone safe. the three general sequences to accomplish any robot task is mapping the environment, the localization, and the navigation (path planning with obstacle avoidance). Since the goal of the robot is to reach its target without colliding, the most important and challenging task of the mobile robot is the navigation. In this paper, the robot navigation problem is solved by proposed two algorithms using low-cost IR receiver sensors arranged as an array, and a robot has been equipped with one IR transmitter. Firstly, the shortest orientation algorithm is proposed, the robot direction is corrected at each step of movement depending on the angle calculation. secondly, an Active orientation algorithm is presented to solve the weakness in the preceding algorithm. A chain of the active sensors in the environment within the sensing range of the virtual path is activated to be scan through the robot movement. In each algorithm, the initial position of the robot is detected using the modified binary search algorithm, various stages are used to avoid obstacles through suitable equations focusing on finding the shortest and the safer path of the robot. Simulation results with multi-resolution environment explained the efficiency of the algorithms, they are compatible with the designed environment, it provides safe movements (without hitting obstacles) and a good system control performance. A Comparison table is also provided.

Article
An Efficient Mathematical Approach for an Indoor Robot Localization System

Israa Sabri A. AL-Forati, Abdulmuttalib Rashid, Fatemah Al-Assfor

Pages: 61-70

PDF Full Text
Abstract

In a counterfeit clever control procedure, another productive methodology for an indoor robot localization framework is arranged. In this paper, a new mathematic calculation for the robot confinement framework utilizing light sensors is proposed. This procedure takes care of the issue of localization (position recognizing) when utilizing a grid of LEDs distributed uniformly in the environment, and a multi- portable robot outfitted with a multi-LDRs sensor and just two of them activate the visibility robot. The proposed method is utilized to assess the robot's situation by drawing two virtual circles for each two LDR sensors; one of them is valid and the other is disregarded according to several suggested equations. The midpoint of this circle is assumed to be the robot focus. The new framework is simulated on a domain with (n*n) LEDs exhibit. The simulation impact of this framework shows great execution in the localization procedure.

1 - 3 of 3 items

Search Parameters

Journal Logo
Iraqi Journal for Electrical and Electronic Engineering

College of Engineering, University of Basrah

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

Copyright © 2025 College of Engineering, University of Basrah. All rights reserved, including those for text and data mining, AI training, and similar technologies.