Iraqi Journal for Electrical and Electronic Engineering
Login
Iraqi Journal for Electrical and Electronic Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Proofreading Service
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Abstracting and indexing
    • Announcements
    • Contact

Search Results for Hussein Mahmood Mohammed

Article
Simulation & Performance Study of Wireless Sensor Network (WSN) Using MATLAB

Qutaiba Ibrahem Ali, Akram Abdulmaowjod, Hussein Mahmood Mohammed

Pages: 112-119

PDF Full Text
Abstract

A wireless sensor network consists of spatially distributed autonomous sensors to cooperatively monitor physical or environmental conditions, such as temperature, sound, vibration, pressure, motion or pollutants. Different approaches have used for simulation and modeling of SN (Sensor Network) and WSN. Traditional approaches consist of various simulation tools based on different languages such as C, C++ and Java. In this paper, MATLAB (7.6) Simulink was used to build a complete WSN system. Simulation procedure includes building the hardware architecture of the transmitting nodes, modeling both the communication channel and the receiving master node architecture. Bluetooth was chosen to undertake the physical layer communication with respect to different channel parameters (i.e., Signal to Noise ratio, Attenuation and Interference). The simulation model was examined using different topologies under various conditions and numerous results were collected. This new simulation methodology proves the ability of the Simulink MATLAB to be a useful and flexible approach to study the effect of different physical layer parameters on the performance of wireless sensor networks.

Article
Design and Implementation of a Fuzzy Controller for Small Rotation Angles

Mohammed Mahmood Hussein

Pages: 14-18

PDF Full Text
Abstract

This paper present an adaptation mechanism for fuzzy logic controller FLC in order to perfect the response performance against small rotation angles of real D.C. motor with unknown parameters. A supervisor fuzzy controller SFC is designed to continuously adjust, on-line, the universe of discourse UOD of the basic fuzzy controller BFC input variables based on position error and change of position error. Performance of the proposed adaptive fuzzy controller is compared with corresponding conventional FLC in terms of several performance measures such rise time, settling time, peak overshoot, and steady state error. The system design and implementation are carried out using LabVIEW 2009 with NI PCI-6251 data acquisition DAQ card. The practical results demonstrate using self tuning FLC scheme grant a better performance as compared with conventional FLC which is incapable of rotating a motor if the rotation angle is being small.

Article
LabVIEW FPGA Implementation Of a PID Controller For D.C. Motor Speed Control

Fakhrulddin H. Ali, Mohammed Mahmood Hussein, Sinan M.B. Ismael

Pages: 139-144

PDF Full Text
Abstract

This Paper presents a novel hardware design methodology of digital control systems. For this, instead of synthesizing the control system using Very high speed integration circuit Hardware Description Language (VHDL), LabVIEW FPGA module from National Instrument (NI) is used to design the whole system that include analog capture circuit to take out the analog signals (set point and process variable) from the real world, PID controller module, and PWM signal generator module to drive the motor. The physical implementation of the digital system is based on Spartan-3E FPGA from Xilinx. Simulation studies of speed control of a D.C. motor are conducted and the effect of a sudden change in reference speed and load are also included.

1 - 3 of 3 items

Search Parameters

Journal Logo
Iraqi Journal for Electrical and Electronic Engineering

College of Engineering, University of Basrah

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

Copyright © 2025 College of Engineering, University of Basrah. All rights reserved, including those for text and data mining, AI training, and similar technologies.