Iraqi Journal for Electrical and Electronic Engineering
Login
Iraqi Journal for Electrical and Electronic Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Proofreading Service
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Abstracting and indexing
    • Announcements
    • Contact

Search Results for Fatimah S. Abdulsattar

Article
The Effect of Using Projective Cameras on View- Independent Gait Recognition Performance

Fatimah S. Abdulsattar

Pages: 22-29

PDF Full Text
Abstract

Gait as a biometric can be used to identify subjects at a distance and thus it receives great attention from the research community for security and surveillance applications. One of the challenges that affects gait recognition performance is view variation. Much work has been done to tackle this challenge. However, the majority of the work assumes that gait silhouettes are captured by affine cameras where only the height of silhouettes changes and the difference in viewing angle of silhouettes in one gait cycle is relatively small. In this paper, we analyze the variation in gait recognition performance when using silhouettes from projective cameras and from affine cameras with different distance from the center of a walking path. This is done by using 3D models of walking people in the gallery set and 2D gait silhouettes from independent (single) cameras in the probe set. Different factors that affect matching 3D human models with 2D gait silhouettes from single cameras for view-independent gait recognition are analyzed. In all experiments, we use 258 multi-view sequences belong to 46 subjects from Multi-View Soton gait dataset. We evaluate the matching performance for 12 different views using Gait Energy Image (GEI) as gait features. Then, we analyze the effect of using different camera configurations for 3D model reconstruction, the GEI from cameras with different settings, the upper and lower body parts for recognition and different GEI resolutions. The results illustrate that low recognition performance is achieved when using gait silhouettes from affine cameras while lower recognition performance is obtained when using gait silhouettes from projective cameras.

1 - 1 of 1 items

Search Parameters

Journal Logo
Iraqi Journal for Electrical and Electronic Engineering

College of Engineering, University of Basrah

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

Copyright © 2025 College of Engineering, University of Basrah. All rights reserved, including those for text and data mining, AI training, and similar technologies.