Soft-switching technique can substantially improve the performance of power converters, mainly due to the increase of switching frequency, that result in better modulation quality. This is more concerned particularly in the high power applications, where devices [gate turn off (GTO) or something else similar) can not operate over a few hundreds of hertz in conventional hard switching converter structures. In this paper, design and analysis of moderate power ZCT three-phase PWM inverter has been presented. Also, the designed inverter and its novel control circuit is implemented experimentally to investigate its characteristics with this new zero-current transition ZCT technique.
The reliance on networks and systems has grown rapidly in contemporary times, leading to increased vulnerability to cyber assaults. The Distributed Denial-of-Service (Distributed Denial of Service) attack, a threat that can cause great financial liabilities and reputation damage. To address this problem, Machine Learning (ML) algorithms have gained huge attention, enabling the detection and prevention of DDOS (Distributed Denial of Service) Attacks. In this study, we proposed a novel security mechanism to avoid Distributed Denial of Service attacks. Using an ensemble learning methodology aims to it also can differentiate between normal network traffic and the malicious flood of Distributed Denial of Service attack traffic. The study also evaluates the performance of two well-known ML algorithms, namely, the decision tree and random forest, which were used to execute the proposed method. Tree in defending against Distributed Denial of Service (DDoS) attacks. We test the models using a publicly available dataset called TIME SERIES DATASET FOR DISTRIBUTED DENIAL OF SERVICE ATTACK DETECTION. We compare the performance of models using a list of evaluation metrics developing the Model. This step involves fetching the data, preprocessing it, and splitting it into training and testing subgroups, model selection, and validation. When applied to a database of nearly 11,000 time series; in some cases, the proposed approach manifested promising results and reached an Accuracy (ACC) of up to 100 % in the dataset. Ultimately, this proposed method detects and mitigates distributed denial of service. The solution to securing communication systems from this increasing cyber threat is this: preventing attacks from being successful.
Soft commutation techniques have been of great interest during the last few years in power supply switching applications. The recently developed Zero-Voltage transition (ZVT) and Zero-Current transition (ZCT) pulse width modulation (PWM) technique incorporated soft-switching function into PWM converters, so that the switching losses can be reduced with minimum voltage/current stresses and circulating energy. The ZCT technique can significantly reduce the switch turn-off loss which is usually the dominant switching loss in high-power applications. In this paper the steady state analysis and design of the ZCT PWM boost converter are introduced. Control and drive circuit have been designed to drive a 100 Watt ZCT PWM boost converter to experimentally investigate its features and characteristics.