Every day, a tremendous amount of image data is generated as a result of recent advances in imaging and computing technology. Several content-based image retrieval (CBIR) approaches have been introduced for searching image collections. These methods, however, involve greater computing and storage resources. Cloud servers can address this issue by offering a large amount of computational power at a low cost. However, cloud servers are not completely trustworthy, and data owners are concerned about the privacy of their personal information. In this research, we propose and implement a secure CBIR (SCBIR) strategy for searching and retrieving cipher text image databases. In the proposed scheme, the extract aggregated feature vectors to represent the related image collection and use a safe Asymmetric Scalar-Product-Preserving Encryption (ASPE) approach to encrypt these vectors while still allowing for similarity computation. To improve search time, all encrypted features are recursively clustered using the k-means method to create a tree index. The results reveal that SCBIR is faster at indexing and retrieving than earlier systems, with superior retrieval precision and scalability. In addition, our paper introduces the watermark to discover any illegal distributions of the images that are received by unlawful data users. Particularly, the cloud server integrates a unique watermark directly into the encrypted images before sending them to the data users. As a result, if an unapproved image copy is revealed, the watermark can be extracted and the unauthorized data users who spread the image can be identified. The performance of the proposed scheme is proved, while its performance is demonstrated through experimental results.
Due to the recent improvements in imaging and computing technologies, a massive quantity of image data is generated every day. For searching image collection, several content-based image retrieval (CBIR) methods have been introduced. However, these methods need more computing and storage resources. Cloud servers can fill this gap by providing huge computational power at a cheap price. However, cloud servers are not fully trusted, thus image owners have legal concerns about the privacy of their private data. In this paper, we proposed and implemented a privacy-preserving CBIR (PP-CBIR) scheme that allows searching and retrieving image databases in a cipher text format. Specifically, we extract aggregated feature vectors to represent the corresponding image collection and employ the asymmetric scalar-product-preserving encryption scheme (ASPE) method to protect these vectors while allowing for similarity computation between these encrypted vectors. To enhance search time, all encrypted features are clustered by the k-means algorithm recursively to construct a tree index. Results show that PP-CBIR has faster indexing and retrieving with good retrieval precision and scalability than previous schemes.