The Leader detecting and following are one of the main challenges in designing a leader-follower multi-robot system, in addition to the challenge of achieving the formation between the robots, while tracking the leader. The biological system is one of the main sources of inspiration for understanding and designing such multi-robot systems, especially, the aggregations that follow an external stimulus such as light. In this paper, a multi-robot system in which the robots are following a spotlight is designed based on the behavior of the Artemia aggregations. Three models are designed: kinematic and two dynamic models. The kinematic model reveals the light attraction behavior of the Artemia aggregations. The dynamic model will be derived based on the newton equation of forces and its parameters are evaluated by two methods: first, a direct method based on the physical structure of the robot and, second, the Least Square Parameter Estimation method. Several experiments are implemented in order to check the success of the three proposed systems and compare their performance. The experiments are divided into three scenarios of simulation according to three paths: the straight line, circle, zigzag path. The V-Rep software has been used for the simulation and the results appeared the success of the proposed system and the high performance of tracking the spotlight and achieving the flock formation, especially the dynamic models.
In modern robotic field, many challenges have been appeared, especially in case of a multi-robot system that used to achieve tasks. The challenges are due to the complexity of the multi-robot system, which make the modeling of such system more difficult. The groups of animals in real world are an inspiration for modeling of a multi- individual system such as aggregation of Artemia. Therefore, in this paper, the multi-robot control system based on external stimuli such as light has been proposed, in which the feature of tracking Artemia to the light has been employed for this purpose. The mathematical model of the proposed design is derived and then Simulated by V-rep software. Several experiments are implemented in order to evaluate the proposed design, which is divided into two scenarios. The first scenario includes simulation of the system in situation of attraction of robot to fixed light spot, while the second scenario is the simulation of the system in the situation of the robots tracking of the movable light spot and formed different patterns like a straight-line, circular, and zigzag patterns. The results of experiments appeared that the mobile robot attraction to high-intensity light, in addition, the multi-robot system can be controlled by external stimuli. Finally, the performance of the proposed system has been analyzed.
The demand for application of mobile robots in performing boring and extensive tasks are increasing rapidly due to unavailability of human workforce. Navigation by humans within the warehouse is one among such repetitive and exhaustive task. Autonomous navigation of mobile robots for picking and dropping the shelves within the warehouse will save time and money for the warehousing business. Proposing an optimization model for automated storage and retrieval systems by the goals of its planning is investigated to minimize travel time in multi-robot systems. This paper deals with designing a system for storing and retrieving a group of materials within an environment arranged in rows and columns. Its intersections represent storage locations. The title of any subject is indicated by the row number and the column in it. A method was proposed to store and retrieve a set of requests (materials) using a number of robots as well as one receiving and delivery port. Several simulation results are tested to show this improvement in length of path and time of arrival.