Iraqi Journal for Electrical and Electronic Engineering
Login
Iraqi Journal for Electrical and Electronic Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Proofreading Service
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Abstracting and indexing
    • Announcements
    • Contact

Search Results for Abdulla J. Y. Aldarwish

Article
Authentication Healthcare Scheme in WBAN

Abdullah Mohammed Rashid, Ali A. Yassin, Abdulla J. Y. Aldarwish, Aqeel A. Yaseen, Hamid Alasadi, Ammar Asaad, Alzahraa J. Mohammed

Pages: 118-127

PDF Full Text
Abstract

A wireless body area network (WBAN) connects separate sensors in many places of the human body, such as clothes, under the skin. WBAN can be used in many domains such as health care, sports, and control system. In this paper, a scheme focused on managing a patient’s health care is presented based on building a WBAN that consists of three components, biometric sensors, mobile applications related to the patient, and a remote server. An excellent scheme is proposed for the patient’s device, such as a mobile phone or a smartwatch, which can classify the signal coming from a biometric sensor into two types, normal and abnormal. In an abnormal signal, the device can carry out appropriate activities for the patient without requiring a doctor as a first case. The patient does not respond to the warning message in a critical case sometimes, and the personal device sends an alert to the patient’s family, including his/her location. The proposed scheme can preserve the privacy of the sensitive data of the patient in a protected way and can support several security features such as mutual authentication, key management, anonymous password, and resistance to malicious attacks. These features have been proven depending on the Automated Validation of Internet Security Protocols and Applications. Moreover, the computation and communication costs are efficient compared with other related schemes.

Article
An Efficient EHR Secure Exchange Among Healthcare Servers Using Light Weight Scheme

Aqeel Adel Yaseen, Kalyani Patel, Abdulla J. Aldarwish, Ali A. Yassin

Pages: 69-82

PDF Full Text
Abstract

This work addresses the critical need for secure and patient-controlled Electronic Health Records (EHR) migration among healthcare hospitals’ cloud servers (HHS). The relevant approaches often lack robust access control and leave data vulnerable during transfer. Our proposed scheme empowers patients to delegate EHR migration to a trusted Third-Party Hospital (TTPH); which is the Certification Authority (CA) while enforcing access control. The system leverages asymmetric encryption utilizing the Elliptic Curve Digital Signature Algorithm (ECDSA), EEC and ECDSA added robust security and lightness EHR sharing. Patient and user privacy is managed due to anonymity through cryptographic hashing for data protection and utilizes mutual authentication for secure communication. Formal security analysis using the Scyther tool and informal analysis was conducted to validate the system’s robustness. The proposed scheme achieved EHR integrity due to the verification of the communicated HHS and ensuring the integrity of the HHS digital certificate during EHR migration. Ultimately, the result achieved in the proposed work demonstrated the scheme’s high balance between data security and accuracy of communication, where the best result obtained represented 7.7/ ms as computational cost and 1248 /bits as communication cost compared with the relevant approaches.

1 - 2 of 2 items

Search Parameters

Journal Logo
Iraqi Journal for Electrical and Electronic Engineering

College of Engineering, University of Basrah

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

Copyright © 2025 College of Engineering, University of Basrah. All rights reserved, including those for text and data mining, AI training, and similar technologies.