Iraqi Journal for Electrical and Electronic Engineering
Login
Iraqi Journal for Electrical and Electronic Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Proofreading Service
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Abstracting and indexing
    • Announcements
    • Contact

Search Results for Abdul-Basset Al- Hussein

Article
Chameleon Chaotic System-Based Audio Encryption Algorithm and FPGA Implementation

Alaa Shumran, Abdul-Basset A. Al-Hussein

Pages: 232-250

PDF Full Text
Abstract

Audio encryption has gained popularity in a variety of fields including education, banking over the phone, military, and private audio conferences. Data encryption algorithms are necessary for processing and sending sensitive information in the context of secure speech conversations. In recent years, the importance of security in any communications system has increased. To transfer data securely, a variety of methods have been used. Chaotic system-based encryption is one of the most significant encryption methods used in the field of security. Chaos-based communication is a promising application of chaos theory and nonlinear dynamics. In this research, a chaotic algorithm for the new chaotic chameleon system was proposed, studied, and implemented. The chameleon chaotic system has been preferred to be employed because it has the property of changing from self-excited (SA) to hidden-attractor (HA) which increases the complexity of the system dynamics and gives strength to the encryption algorithm. A chaotic chameleon system is one in which, depending on the parameter values, the chaotic attractor alternates between being a hidden attractor and a self-excited attractor. This is an important feature, so it is preferable to use it in cryptography compared to other types of chaotic systems. This model was first implemented using a Field Programmable Gate Array (FPGA), which is the first time it has been implemented in practical applications. The chameleon system model was implemented using MATLAB Simulink and the Xilinx System Generator model. Self-excited, hidden, and coexisting attractors are shown in the proposed system. Vivado software was used to validate the designs, and Xilinx ZedBoard Zynq-7000 FPGA was used to implement them. The dynamic behavior of the proposed chaotic system was also studied and analysis methods, including phase portrait, bifurcation diagrams, and Lyapunov exponents. Assessing the quality of the suggested method by doing analyses of many quality measures, including correlation, differential signal-to-noise ratio (SNR), entropy, histogram analysis, and spectral density plot. The numerical analyses and simulation results demonstrate how well the suggested method performs in terms of security against different types of cryptographic assaults.

Article
Chaos Phenomenon in Power Systems: A Review

Abdul-Basset A. Al-Hussein

Pages: 219-225

PDF Full Text
Abstract

This review article puts forward the phenomena of chaotic oscillation in electrical power systems. The aim is to present some short summaries written by distinguished researchers in the field of chaotic oscillation in power systems. The reviewed papers are classified according to the phenomena that cause the chaotic oscillations in electrical power systems. Modern electrical power systems are evolving day by day from small networks toward large-scale grids. Electrical power systems are constituted of multiple inter-linked together elements, such as synchronous generators, transformers, transmission lines, linear and nonlinear loads, and many other devices. Most of these components are inherently nonlinear in nature rendering the whole electrical power system as a complex nonlinear network. Nonlinear systems can evolve very complex dynamics such as static and dynamic bifurcations and may also behave chaotically. Chaos in electrical power systems is very unwanted as it can drive system bus voltage to instability and can lead to voltage collapse and ultimately cause a general blackout.

Article
Design and FPGA Implementation of a Hyper-Chaotic System for Real-time Secure Image Transmission

Abdul-Basset A. Al-Hussein, Fadhil Rahma Tahir, Ghaida A. Al-Suhail

Pages: 55-68

PDF Full Text
Abstract

Recently, chaos theory has been widely used in multimedia and digital communications due to its unique properties that can enhance security, data compression, and signal processing. It plays a significant role in securing digital images and protecting sensitive visual information from unauthorized access, tampering, and interception. In this regard, chaotic signals are used in image encryption to empower the security; that’s because chaotic systems are characterized by their sensitivity to initial conditions, and their unpredictable and seemingly random behavior. In particular, hyper-chaotic systems involve multiple chaotic systems interacting with each other. These systems can introduce more randomness and complexity, leading to stronger encryption techniques. In this paper, Hyper-chaotic Lorenz system is considered to design robust image encryption/ decryption system based on master-slave synchronization. Firstly, the rich dynamic characteristics of this system is studied using analytical and numerical nonlinear analysis tools. Next, the image secure system has been implemented through Field-Programmable Gate Arrays (FPGAs) Zedboard Zynq xc7z020-1clg484 to verify the image encryption/decryption directly on programmable hardware Kit. Numerical simulations, hardware implementation, and cryptanalysis tools are conducted to validate the effectiveness and robustness of the proposed system.

Article
Optimal Learning Controller Design Using Particle Swarm Optimization: Applied to CSI System

Khulood Moosa Omran, Abdul-Basset A. Al- Hussein, Basil Hani Jassim

Pages: 104-112

PDF Full Text
Abstract

In this article, a PD-type iterative learning control algorithm (ILC) is proposed to a nonlinear time-varying system for cases of measurement disturbances and the initial state errors. The proposed control approach uses a simple structure and has an easy implementation. The iterative learning controller was utilized to control a constant current source inverter (CSI) with pulse width modulation (PWM); subsequently the output current trajectory converged the sinusoidal reference signal and provided constant switching frequency. The learning controller's parameters were tuned using particle swarm optimization approach to get best optimal control for the system output. The tracking error limit is achieved using the convergence exploration. The proposed learning control scheme was robust against the error in initial conditions and disturbances which outcome from the system modeling inaccuracies and uncertainties. It could correct the distortion of the inverter output current waveform with less computation and less complexity. The proposed algorithm was proved mathematically and through computer simulation. The proposed optimal learning method demonstrated good performances.

Article
A New Model For Endocrine Glucose-Insulin Regulatory System

Abdul-Basset A. Al-Hussein, Fadhil Rahma Tahir

Pages: 1-8

PDF Full Text
Abstract

To gain insight into complex biological endocrine glucose-insulin regulatory system where the interactions of components of the metabolic system and time-delay inherent in the biological system give rise to complex dynamics. The modeling has increased interest and importance in physiological research and enhanced the medical treatment protocols. This brief contains a new model using time delay differential equations, which give an accurate result by utilizing two explicit time delays. The bifurcation analysis has been conducted to find the main system parameters bifurcation values and corresponding system behaviors. The results found consistent with the biological experiments results.

Article
Neural Network-Based Adaptive Control of Robotic Manipulator: Application to a Three Links Cylindrical Robot

Abdul-Basset A. AL-Hussein

Pages: 114-122

PDF Full Text
Abstract

A composite PD and sliding mode neural network (NN)-based adaptive controller, for robotic manipulator trajectory tracking, is presented in this paper. The designed neural networks are exploited to approximate the robotics dynamics nonlinearities, and compensate its effect and this will enhance the performance of the filtered error based PD and sliding mode controller. Lyapunov theorem has been used to prove the stability of the system and the tracking error boundedness. The augmented Lyapunov function is used to derive the NN weights learning law. To reduce the effect of breaching the NN learning law excitation condition due to external disturbances and measurement noise; a modified learning law is suggested based on e-modification algorithm. The controller effectiveness is demonstrated through computer simulation of cylindrical robot manipulator.

Article
Hover Control for Helicopter Using Neural Network-Based Model Reference Adaptive Controller

Abdul-Basset A. Al-Hussein

Pages: 67-72

PDF Full Text
Abstract

Unmanned aerial vehicles (UAV), have enormous important application in many fields. Quanser three degree of freedom (3-DOF) helicopter is a benchmark laboratory model for testing and validating the validity of various flight control algorithms. The elevation control of a 3-DOF helicopter is a complex task due to system nonlinearity, uncertainty and strong coupling dynamical model. In this paper, an RBF neural network model reference adaptive controller has been used, employing the grate approximation capability of the neural network to match the unknown and nonlinearity in order to build a strong MRAC adaptive control algorithm. The control law and stable neural network updating law are determined using Lyapunov theory.

Article
Combined Neural Network and PD Adaptive Tracking Controller for Ship Steering System

Abdul-Basset Al- Hussein

Pages: 59-66

PDF Full Text
Abstract

In this paper, a combined RBF neural network sliding mode control and PD adaptive tracking controller is proposed for controlling the directional heading course of a ship. Due to the high nonlinearity and uncertainty of the ship dynamics as well as the effect of wave disturbances a performance evaluation and ship controller design is stay difficult task. The Neural network used for adaptively learn the uncertain dynamics bounds of the ship and their output used as part of the control law moreover the PD term is used to reduce the effect of the approximation error inherited in the RBF networks. The stability of the system with the combined control law guaranteed through Lyapunov analysis. Numeric simulation results confirm the proposed controller provide good system stability and convergence.

Article
Study of Chaotic-based Audio Encryption Algorithms: A Review

Alaa Shumran, Abdul-Basset A. Al-Hussein

Pages: 85-103

PDF Full Text
Abstract

Nowadays, multimedia communication has become very widespread and this requires it to be protected from attackers and transmitted securely for reliability. Encryption and decryption techniques are useful in providing effective security for speech signals to ensure that these signals are transmitted with secure data and prevent third parties or the public from reading private messages. Due to the rapid improvement in digital communications over the recent period up to the present, the security of voice data transmitted over various networks has been classified as a favored field of study in earlier years. The contributions to audio encryption are discussed in this review. This Comprehensive review mainly focuses on presenting several kinds of methods for audio encryption and decryption the analysis of these methods with their advantages and disadvantages have been investigated thoroughly. It will be classified into encryption based on traditional methods and encryption based on advanced chaotic systems. They are divided into two types, continuous-time system, and discrete-time system, and also classified based on the synchronization method and the implementation method. In the fields of information and communications security, system designers face many challenges in both cost, performance, and architecture design, Field Programmable gate arrays (FPGAs) provide an excellent balance between computational power and processing flexibility. In addition, encryption methods will be classified based on Chaos-based Pseudo Random Bit Generator, Fractional-order systems, and hybrid chaotic generator systems, which is an advantageous point for this review compared with previous ones. Audio algorithms are presented, discussed, and compared, highlighting important advantages and disadvantages. Audio signals have a large volume and a strong correlation between data samples. Therefore, if traditional cryptography systems are used to encrypt such huge data, they gain significant overhead. Standard symmetric encryption systems also have a small key-space, which makes them vulnerable to attacks. On the other hand, encryption by asymmetric algorithms is not ideal due to low processing speed and complexity. Therefore, great importance has been given to using chaotic theory to encode audio files. Therefore, when proposing an appropriate encryption method to ensure a high degree of security, the key space, which is the critical part of every encryption system, and the key sensitivity must be taken into account. The key sensitivity is related to the initial values and control variables of the chaotic system chosen as the audio encryption algorithm. In addition, the proposed algorithm should eliminate the problems of periodic windows, such as limited chaotic range and non-uniform distribution, and the quality of the recovered audio signal remains good, which confirms the convenience, reliability, and high security.

1 - 9 of 9 items

Search Parameters

Journal Logo
Iraqi Journal for Electrical and Electronic Engineering

College of Engineering, University of Basrah

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

Copyright © 2025 College of Engineering, University of Basrah. All rights reserved, including those for text and data mining, AI training, and similar technologies.