Cover
Vol. 13 No. 1 (2017)

Published: July 31, 2017

Pages: 53-58

Original Article

Effect of Temperature Variations on Strain Response of Polymer Bragg Grating Optical Fibers

Abstract

This paper presents a numerical analysis for the effect of temperature variations on the strain response of polymer optical fiber (POF) Bragg gratings. Results show that the dependence of the Bragg wavelength (λ B ) upon strain and temperature variations for the POF Bragg gratings is lies within the range of 0.462 – 0.470 fm με -1 °C -1 compare with 0.14 – 0.15 fm με -1 °C -1 for the SOFs Bragg gratings. Also, results show that the strain response for the POF Bragg gratings changed on average by 1.034 ± 0.02fm με - important for strain sensor applications especially in the environments where the temperature change.

References

  1. Hisham K. Hisham, “ Design Methodology for Reducing RIN Level in DFB Lasers ”, Iraq J. Electrical and Electronic Engineering, Vol. 12, pp. 207-213, 2016.
  2. Hisham K. Hisham, “ Turn_On Time Reduction in VCSELs by optimizing laser parameters ”, Iraq J. Electrical and Electronic Engineering, Vol. 12, 2016.
  3. Hisham K. Hisham,” Numerical Analysis of Thermal Dependence of the Spectral Response of Polymer Optical Fiber Bragg Gratings”, Iraq J. Electrical and Electronic Engineering, Vol.12, pp.85-95, 2016.
  4. T. Habisreuther, T. Elsmann, A. Graf, and M. A. Schmidt,” High-Temperature Strain Sensing Using Sapphire Fibers With Inscribed FirstOrder Bragg Gratings”, IEEE Photon. Journal, Vol. 8, 2016.
  5. Accessed Feb. 24, 2016. [Online]. Available: http://www.fbgs.com/applications/strain-sensing.
  6. P. Moyo, J. M. W. Brownjohn, R. Suresh and S. C. Tjin, “Development of fiber Bragg grating sensors for monitoring civil infrastructure,” Eng. Struct., vol. 27, pp. 1828–1834, 2005.
  7. M. Silva-Lopez, A. Fender, W.N. MacPherson, J.S. Barton, J.D.C. Jones, D. Zhao, D.J. Webb and L. Zhang, Bennion,”Strain and temperature sensitivity of a single-mode polymer optical fibre”, 17th Inte. Conf. on Optical Fibre Sensors, Proceedings of SPIE Vol. 5855, (SPIE, Bellingham, WA, 2005).
  8. Yu, J. M., Tao, X. M., and Tam, H. Y. Trans-4stilbenemethanoldoped photosensitive polymer fibers and gratings. Opt. Lett . 2004; 29: 156–158.
  9. Keiser, (2000). Optical Fiber Communications . 3 rd ed. McGraw-Hill, Boston, USA.
  10. Scholze, H. (1991). Glass; Nature, Structure, and Properties , Springer-Verlag, New York, USA.
  11. Sirkis, J. S. Unified approach to phase-straintemperature models for smart structure development. Opt. Eng . 1993; 32 : 752-761.
  12. Kersey, A. D., Davis, M. A., Patrick, H. J., Blanc, M. L., Koo, K. P., Askins, C. G., Putnam, M. A., and Friebele, E. J. Fiber grating sensors. J Lightwave Technol. 1997; 15: 1442–1462.
  13. I. Haggmark,” Fiber Bragg Gratings in Temperature and Strain Sensors”, B.Sc thesis, Royal Institute of Technology, 2014.
  14. A. Othonos, K. Kalli, “Fiber Bragg GratingFundamentals and Applications Telecommunications and Sensing,” Artech House, Boston, 1999.