Page 82 - IJEEE-2023-Vol19-ISSUE-1
P. 82

78 |                                                                                                             Abdulla & Marhoon

them with a threshold limit for the appropriate climatic            Electron. Informatics, ICOEI 2019, no. Icoei, pp. 523–
conditions for the tomato plant. If it exceeds it, the farmer is    528, 2019, doi: 10.1109/ICOEI.2019.8862778.
alerted to take the proper action to reduce its impact on the     [12] P. Daponte et al., “A review on the use of drones for
plant. Since the designed system has proven its efficiency in       precision agriculture,” IOP Conf. Ser. Earth Environ. Sci.,
classifying tomato diseases and in monitoring the                   vol. 275, no. 1, 2019, doi: 10.1088/1755-
environmental conditions of the plant and automatic                 1315/275/1/012022.
irrigation.                                                       [13] B. Faithpraise and C. Chatwin, "Automatic Plant Pest
                                                                    Detection And Recognition Using K-Means Clustering
                     CONFLICT OF INTEREST                           Algorithm And Correspondence Filters," International
                                                                    Journal of Advanced Biotechnology and Research, vol. 4,
     The authors have no conflict of relevant interest to this      no. 2, pp. 189–199, 2013.
article.                                                          [14] N. Soontranon, P. Tangpattanakul, P. Srestasathiern,
                                                                    and P. Rakwatin, "An Agricultural Monitoring System :
                    REFERENCES                                      Field Server Data Collection and Analysis on Paddy
                                                                    Field," 14th International Symposium on
[1] Jaradat, “Agriculture in Iraq: Resources, potentials,           Communications and Information Technologies (ISCIT),
                                                                    2014.
constraints, research needs and priorities,” Agriculture,         [15] A. Uzhinskiy, G. Ososkov, P. Goncharov, and A.
                                                                    Nechaevskiy, “Multifunctional platform and mobile
p.83,  2003.              [Online].         Available:              application for plant disease detection,” CEUR Workshop
                                                                    Proc., vol. 2507, pp.110–114, 2019.
http://ddr.nal.usda.gov/dspace/handle/10113/47863.                [16] J. C. Valdoria, A. R. Caballeo, B. I. D. Fernandez, and
                                                                    J. M. M. Condino, “IDahon: An Android Based
[2] H. Abbas Drebee and N. Azam Abdul-Razak, “The                   Terrestrial Plant Disease Detection Mobile Application
                                                                    Through Digital Image Processing Using Deep Learning
Impact of Corruption on Agriculture Sector in Iraq:                 Neural Network Algorithm,” Proc. 2019 4th Int. Conf.
                                                                    Inf. Technol. Encompassing Intell. Technol. Innov.Towar.
Econometrics Approach,” IOP Conf. Ser. Earth Environ.               New Era Hum. Life, InCIT 2019, pp. 94–98, 2019 doi:
                                                                    10.1109/INCIT.2019.8912053.
Sci., vol. 553, no. 1, 2020 doi: 10.1088/1755-                    [17] A. Smetanin, A. Uzhinskiy, G. Ososkov, P. Goncharov,
                                                                    and A. Nechaevskiy, “Deep learning methods for the plant
1315/553/1/012019.                                                  disease detection platform,” AIP Conf. Proc., vol. 2377,
                                                                    no. September, 2021, doi: 10.1063/5.0068797.
[3] M. Abdulla and A. Marhoon, “Agriculture based on              [18] A. O. Adedoja, P. A. Owolawi, T. Mapayi, and C. Tu,
                                                                    “Intelligent Mobile Plant Disease Diagnostic System
Internet of Things and Deep Learning,” vol. 18, Issue 2,            UsingNASNet-Mobile Deep Learning,” IAENG Int. J.
                                                                    Comput. Sci., vol. 49, no. 1, pp. 216–231, 2022.
pp. 1–8, 2022. doi: 10.37917/ijeee.18.2.1.                        [19] M. A. Jasim and J. M. Al-Tuwaijari, “Plant Leaf
                                                                    Diseases Detection and Classification Using Image
[4] M. S. Farooq, S. Riaz, A. Abid, K. Abid, and M. A.              Processing and Deep Learning Techniques,” Proc. 2020
                                                                    Int. Conf. Comput. Sci. Softw. Eng. CSASE 2020, pp. 259–
Naeem, “A Survey on the Role of IoT in Agriculture for              265, 2020, doi: 10.1109/CSASE48920.2020.9142097.
                                                                  [20] J. Muangprathub, N. Boonnam, S. Kajornkasirat, N.
the Implementation of Smart Farming,” IEEE Access, vol.             Lekbangpong, A. Wanichsombat, and P. Nillaor, “IoT and
                                                                    agriculture data analysis for smart farm,” Comput.
7, pp. 156237–156271, 2019. doi:                                    Electron. Agric., vol. 156, no. June 2018,
                                                                    pp.467474,2019. doi: 10.1016/j.compag.2018.12.011.
10.1109/ACCESS.2019.2949703.                                      [21] J. Kwok and Y. Sun, “A smart IoT-based irrigation
                                                                    system with automated plant recognition using deep
[5] O. Elijah, S. Member, T. A. Rahman, and I. Orikumhi,            learning,” ACM Int. Conf. Proceeding Ser., pp. 87–91,
                                                                    2018, doi: 10.1145/3177457.3177506.
“An Overview of Internet of Things ( IoT ) and Data               [22] P. M. Jacob, S. Suresh, J. M. John, P. Nath, P.
                                                                    Nandakumar, and S. Simon, “An Intelligent Agricultural
Analytics in Agriculture : Benefits and Challenges,” vol.           Field Monitoring and Management System using Internet
                                                                    of Things and Machine Learning,”2020 Int. Conf. Data
4662, no. c, pp. 1–17, 2018. doi:                                   Anal. Bus. Ind. Towar. a Sustain. Econ. ICDABI 2020,
                                                                    2020, doi:10.1109/ICDABI51230.2020.9325612.
10.1109/JIOT.2018.2844296.

[6] V. Meshram, K. Patil, V. Meshram, D. Hanchate, and S.

D. Ramkteke, “Machine learning in agriculture domain:

A state-of-art survey,” Artif. Intell. Life Sci., vol. 1, no.

October, p. 100010, 2021.                           doi:

10.1016/j.ailsci.2021.100010.

[7] K. Lova Raju and V. Vijayaraghavan, "IoT Technologies

in Agricultural Environment: A Survey", Springer US,

vol. 113, no. 4. 2020.

[8] J. Ye, B. Chen, Q. Liu, and Y. Fang, “A Precision

Agriculture Management System Based on Internet of

Things and WebGIS,” 2013 21st International Conference

on Geoinformatics, 2013.

[9] R. Mathur, V. Pathak, and D. Bandil, "Emerging Trends

in Expert Applications and Security", Proceedings of

ICETEAS 2018, 2019.

[10] M. Mannan J, S. Kanimozhi Suguna, M. Dhivya, and

T. Parameswaran, “Smart scheduling on cloud for IoT-

based sprinkler irrigation,” Int. J. Pervasive Comput.

Commun., vol. 17, no. 1, pp. 3–19, 2021, doi:

10.1108/IJPCC-03-2020-0013.

[11] D. Sehrawat and N. S. Gill, “Smart sensors: Analysis

of different types of IoT sensors,” Proc. Int. Conf. Trends
   77   78   79   80   81   82   83   84   85   86   87