Page 82 - IJEEE-2023-Vol19-ISSUE-1
P. 82
78 | Abdulla & Marhoon
them with a threshold limit for the appropriate climatic Electron. Informatics, ICOEI 2019, no. Icoei, pp. 523–
conditions for the tomato plant. If it exceeds it, the farmer is 528, 2019, doi: 10.1109/ICOEI.2019.8862778.
alerted to take the proper action to reduce its impact on the [12] P. Daponte et al., “A review on the use of drones for
plant. Since the designed system has proven its efficiency in precision agriculture,” IOP Conf. Ser. Earth Environ. Sci.,
classifying tomato diseases and in monitoring the vol. 275, no. 1, 2019, doi: 10.1088/1755-
environmental conditions of the plant and automatic 1315/275/1/012022.
irrigation. [13] B. Faithpraise and C. Chatwin, "Automatic Plant Pest
Detection And Recognition Using K-Means Clustering
CONFLICT OF INTEREST Algorithm And Correspondence Filters," International
Journal of Advanced Biotechnology and Research, vol. 4,
The authors have no conflict of relevant interest to this no. 2, pp. 189–199, 2013.
article. [14] N. Soontranon, P. Tangpattanakul, P. Srestasathiern,
and P. Rakwatin, "An Agricultural Monitoring System :
REFERENCES Field Server Data Collection and Analysis on Paddy
Field," 14th International Symposium on
[1] Jaradat, “Agriculture in Iraq: Resources, potentials, Communications and Information Technologies (ISCIT),
2014.
constraints, research needs and priorities,” Agriculture, [15] A. Uzhinskiy, G. Ososkov, P. Goncharov, and A.
Nechaevskiy, “Multifunctional platform and mobile
p.83, 2003. [Online]. Available: application for plant disease detection,” CEUR Workshop
Proc., vol. 2507, pp.110–114, 2019.
http://ddr.nal.usda.gov/dspace/handle/10113/47863. [16] J. C. Valdoria, A. R. Caballeo, B. I. D. Fernandez, and
J. M. M. Condino, “IDahon: An Android Based
[2] H. Abbas Drebee and N. Azam Abdul-Razak, “The Terrestrial Plant Disease Detection Mobile Application
Through Digital Image Processing Using Deep Learning
Impact of Corruption on Agriculture Sector in Iraq: Neural Network Algorithm,” Proc. 2019 4th Int. Conf.
Inf. Technol. Encompassing Intell. Technol. Innov.Towar.
Econometrics Approach,” IOP Conf. Ser. Earth Environ. New Era Hum. Life, InCIT 2019, pp. 94–98, 2019 doi:
10.1109/INCIT.2019.8912053.
Sci., vol. 553, no. 1, 2020 doi: 10.1088/1755- [17] A. Smetanin, A. Uzhinskiy, G. Ososkov, P. Goncharov,
and A. Nechaevskiy, “Deep learning methods for the plant
1315/553/1/012019. disease detection platform,” AIP Conf. Proc., vol. 2377,
no. September, 2021, doi: 10.1063/5.0068797.
[3] M. Abdulla and A. Marhoon, “Agriculture based on [18] A. O. Adedoja, P. A. Owolawi, T. Mapayi, and C. Tu,
“Intelligent Mobile Plant Disease Diagnostic System
Internet of Things and Deep Learning,” vol. 18, Issue 2, UsingNASNet-Mobile Deep Learning,” IAENG Int. J.
Comput. Sci., vol. 49, no. 1, pp. 216–231, 2022.
pp. 1–8, 2022. doi: 10.37917/ijeee.18.2.1. [19] M. A. Jasim and J. M. Al-Tuwaijari, “Plant Leaf
Diseases Detection and Classification Using Image
[4] M. S. Farooq, S. Riaz, A. Abid, K. Abid, and M. A. Processing and Deep Learning Techniques,” Proc. 2020
Int. Conf. Comput. Sci. Softw. Eng. CSASE 2020, pp. 259–
Naeem, “A Survey on the Role of IoT in Agriculture for 265, 2020, doi: 10.1109/CSASE48920.2020.9142097.
[20] J. Muangprathub, N. Boonnam, S. Kajornkasirat, N.
the Implementation of Smart Farming,” IEEE Access, vol. Lekbangpong, A. Wanichsombat, and P. Nillaor, “IoT and
agriculture data analysis for smart farm,” Comput.
7, pp. 156237–156271, 2019. doi: Electron. Agric., vol. 156, no. June 2018,
pp.467474,2019. doi: 10.1016/j.compag.2018.12.011.
10.1109/ACCESS.2019.2949703. [21] J. Kwok and Y. Sun, “A smart IoT-based irrigation
system with automated plant recognition using deep
[5] O. Elijah, S. Member, T. A. Rahman, and I. Orikumhi, learning,” ACM Int. Conf. Proceeding Ser., pp. 87–91,
2018, doi: 10.1145/3177457.3177506.
“An Overview of Internet of Things ( IoT ) and Data [22] P. M. Jacob, S. Suresh, J. M. John, P. Nath, P.
Nandakumar, and S. Simon, “An Intelligent Agricultural
Analytics in Agriculture : Benefits and Challenges,” vol. Field Monitoring and Management System using Internet
of Things and Machine Learning,”2020 Int. Conf. Data
4662, no. c, pp. 1–17, 2018. doi: Anal. Bus. Ind. Towar. a Sustain. Econ. ICDABI 2020,
2020, doi:10.1109/ICDABI51230.2020.9325612.
10.1109/JIOT.2018.2844296.
[6] V. Meshram, K. Patil, V. Meshram, D. Hanchate, and S.
D. Ramkteke, “Machine learning in agriculture domain:
A state-of-art survey,” Artif. Intell. Life Sci., vol. 1, no.
October, p. 100010, 2021. doi:
10.1016/j.ailsci.2021.100010.
[7] K. Lova Raju and V. Vijayaraghavan, "IoT Technologies
in Agricultural Environment: A Survey", Springer US,
vol. 113, no. 4. 2020.
[8] J. Ye, B. Chen, Q. Liu, and Y. Fang, “A Precision
Agriculture Management System Based on Internet of
Things and WebGIS,” 2013 21st International Conference
on Geoinformatics, 2013.
[9] R. Mathur, V. Pathak, and D. Bandil, "Emerging Trends
in Expert Applications and Security", Proceedings of
ICETEAS 2018, 2019.
[10] M. Mannan J, S. Kanimozhi Suguna, M. Dhivya, and
T. Parameswaran, “Smart scheduling on cloud for IoT-
based sprinkler irrigation,” Int. J. Pervasive Comput.
Commun., vol. 17, no. 1, pp. 3–19, 2021, doi:
10.1108/IJPCC-03-2020-0013.
[11] D. Sehrawat and N. S. Gill, “Smart sensors: Analysis
of different types of IoT sensors,” Proc. Int. Conf. Trends