Accurate long-term load forecasting (LTLF) is crucial for smart grid operations, but existing CNN-based methods face challenges in extracting essential featuresfrom electricity load data, resulting in diminished forecasting performance. To overcome this limitation, we propose a novel ensemble model that integratesa feature extraction module, densely connected residual block (DCRB), longshort-term memory layer (LSTM), and ensemble thinking. The feature extraction module captures the randomness and trends in climate data, enhancing the accuracy of load data analysis. Leveraging the DCRB, our model demonstrates superior performance by extracting features from multi-scale input data, surpassing conventional CNN-based models. We evaluate our model using hourly load data from Odisha and day-wise data from Delhi, and the experimental results exhibit low root mean square error (RMSE) values of 0.952 and 0.864 for Odisha and Delhi, respectively. This research contributes to a comparative long-term electricity forecasting analysis, showcasing the efficiency of our proposed model in power system management. Moreover, the model holds the potential to sup-port decisionmaking processes, making it a valuable tool for stakeholders in the electricity sector.
In recent years, there has been a considerable rise in the applications in which object or image categorization is beneficial for example, analyzing medicinal images, assisting persons to organize their collections of photos, recognizing what is around self-driving vehicles, and many more. These applications necessitate accurately labeled datasets, in their majority involve an extensive diversity in the types of images, from cats or dogs to roads, landscapes, and so forth. The fundamental aim of image categorization is to predict the category or class for the input image by specifying to which it belongs. For human beings, this is not a considerable thing, however, learning computers to perceive represents a hard issue that has become a broad area of research interest, and both computer vision techniques and deep learning algorithms have evolved. Conventional techniques utilize local descriptors for finding likeness between images, however, nowadays; progress in technology has provided the utilization of deep learning algorithms, especially the Convolutional Neural Networks (CNNs) to auto-extract representative image patterns and features for classification The fundamental aim of this paper is to inspect and explain how to utilize the algorithms and technologies of deep learning to accurately classify a dataset of images into their respective categories and keep model structure complication to a minimum. To achieve this aim, must focus precisely and accurately on categorizing the objects or images into their respective categories with excellent results. And, specify the best deep learning-based models in image processing and categorization. The developed CNN-based models have been proposed and a lot of pre-training models such as (VGG19, DenseNet201, ResNet152V2, MobileNetV2, and InceptionV3) have been presented, and all these models are trained on the Caltech-101 and Caltech-256 datasets. Extensive and comparative experiments were conducted on this dataset, and the obtained results demonstrate the effectiveness of the proposed models. The obtained results demonstrate the effectiveness of the proposed models. The accuracy for Caltech-101 and Caltech-256 datasets was (98.06% and 90%) respectively.
Self-driving cars are a fundamental research subject in recent years; the ultimate goal is to completely exchange the human driver with automated systems. On the other hand, deep learning techniques have revealed performance and effectiveness in several areas. The strength of self-driving cars has been deeply investigated in many areas including object detection, localization as well, and activity recognition. This paper provides an approach to deep learning; which combines the benefits of both convolutional neural network CNN together with Dense technique. This approach learns based on features extracted from the feature extraction technique which is linear discriminant analysis LDA combined with feature expansion techniques namely: standard deviation, min, max, mod, variance and mean. The presented approach has proven its success in both testing and training data and achieving 100% accuracy in both terms.
Arial images are very high resolution. The automation for map generation and semantic segmentation of aerial images are challenging problems in semantic segmentation. The semantic segmentation process does not give us precise details of the remote sensing images due to the low resolution of the aerial images. Hence, we propose an algorithm U-Net Architecture to solve this problem. It is classified into two paths. The compression path (also called: the encoder) is the first path and is used to capture the image's context. The encoder is just a convolutional and maximal pooling layer stack. The symmetric expanding path (also called: the decoder) is the second path, which is used to enable exact localization by transposed convolutions. This task is commonly referred to as dense prediction, which is completely connected to each other and also with the former neurons which gives rise to dense layers. Thus it is an end-to-end fully convolutional network (FCN), i.e. it only contains convolutional layers and does not contain any dense layer because of which it can accept images of any size. The performance of the model will be evaluated by improving the image using the proposed method U-NET and obtaining an improved image by measuring the accuracy compared with the value of accuracy with previous methods.
Brain tumors are collections of abnormal tissues within the brain. The regular function of the brain may be affected as it grows within the region of the skull. Brain tumors are critical for improving treatment options and patient survival rates to prevent and treat them. The diagnosis of cancer utilizing manual approaches for numerous magnetic resonance imaging (MRI) images is the most complex and time-consuming task. Brain tumor segmentation must be carried out automatically. A proposed strategy for brain tumor segmentation is developed in this paper. For this purpose, images are segmented based on region-based and edge-based. Brain tumor segmentation 2020 (BraTS2020) dataset is utilized in this study. A comparative analysis of the segmentation of images using the edge-based and region-based approach with U-Net with ResNet50 encoder, architecture is performed. The edge-based segmentation model performed better in all performance metrics compared to the region-based segmentation model and the edge-based model achieved the dice loss score of 0. 008768, IoU score of 0. 7542, f1 score of 0. 9870, the accuracy of 0. 9935, the precision of 0. 9852, recall of 0. 9888, and specificity of 0. 9951.
Face recognition is the technology that verifies or recognizes faces from images, videos, or real-time streams. It can be used in security or employee attendance systems. Face recognition systems may encounter some attacks that reduce their ability to recognize faces properly. So, many noisy images mixed with original ones lead to confusion in the results. Various attacks that exploit this weakness affect the face recognition systems such as Fast Gradient Sign Method (FGSM), Deep Fool, and Projected Gradient Descent (PGD). This paper proposes a method to protect the face recognition system against these attacks by distorting images through different attacks, then training the recognition deep network model, specifically Convolutional Neural Network (CNN), using the original and distorted images. Diverse experiments have been conducted using combinations of original and distorted images to test the effectiveness of the system. The system showed an accuracy of 93% using FGSM attack, 97% using deep fool, and 95% using PGD.
Automatic signature verification methods play a significant role in providing a secure and authenticated handwritten signature in many applications, to prevent forgery problems, specifically institutions of finance, and transections of legal papers, etc. There are two types of handwritten signature verification methods: online verification (dynamic) and offline verification (static) methods. Besides, signature verification approaches can be categorized into two styles: writer dependent (WD), and writer independent (WI) styles. Offline signature verification methods demands a high representation features for the signature image. However, lots of studies have been proposed for WI offline signature verification. Yet, there is necessity to improve the overall accuracy measurements. Therefore, a proved solution in this paper is depended on deep learning via convolutional neural network (CNN) for signature verification and optimize the overall accuracy measurements. The introduced model is trained on English signature dataset. For model evaluation, the deployed model is utilized to make predictions on new data of Arabic signature dataset to classify whether the signature is real or forged. The overall obtained accuracy is 95.36% based on validation dataset.
Many assistive devices have been developed for visually impaired (VI) person in recent years which solve the problems that face VI person in his/her daily moving. Most of researches try to solve the obstacle avoidance or navigation problem, and others focus on assisting VI person to recognize the objects in his/her surrounding environment. However, a few of them integrate both navigation and recognition capabilities in their system. According to above needs, an assistive device is presented in this paper that achieves both capabilities to aid the VI person to (1) navigate safely from his/her current location (pose) to a desired destination in unknown environment, and (2) recognize his/her surrounding objects. The proposed system consists of the low cost sensors Neato XV-11 LiDAR, ultrasonic sensor, Raspberry pi camera (CameraPi), which are hold on a white cane. Hector SLAM based on 2D LiDAR is used to construct a 2D-map of unfamiliar environment. While A* path planning algorithm generates an optimal path on the given 2D hector map. Moreover, the temporary obstacles in front of VI person are detected by an ultrasonic sensor. The recognition system based on Convolution Neural Networks (CNN) technique is implemented in this work to predict object class besides enhance the navigation system. The interaction between the VI person and an assistive system is done by audio module (speech recognition and speech synthesis). The proposed system performance has been evaluated on various real-time experiments conducted in indoor scenarios, showing the efficiency of the proposed system.
Video prediction theories have quickly progressed especially after a great revolution of deep learning methods. The prediction architectures based on pixel generation produced a blurry forecast, but it is preferred in many applications because this model is applied on frames only and does not need other support information like segmentation or flow mapping information making getting a suitable dataset very difficult. In this approach, we presented a novel end-to-end video forecasting framework to predict the dynamic relationship between pixels in time and space. The 3D CNN encoder is used for estimating the dynamic motion, while the decoder part is used to reconstruct the next frame based on adding 3DCNN CONVLSTM2D in skip connection. This novel representation of skip connection plays an important role in reducing the blur predicted and preserved the spatial and dynamic information. This leads to an increase in the accuracy of the whole model. The KITTI and Cityscapes are used in training and Caltech is applied in inference. The proposed framework has achieved a better quality in PSNR=33.14, MES=0.00101, SSIM=0.924, and a small number of parameters (2.3 M).
In smart cities, health care, industrial production, and many other fields, the Internet of Things (IoT) have had significant success. Protected agriculture has numerous IoT applications, a highly effective style of modern agriculture development that uses artificial ways to manipulate climatic parameters such as temperature to create ideal circumstances for the growth of animals and plants. Convolutional Neural Networks (CNNs) is a deep learning approach that has made significant progress in image processing. From 2016 to the present, various applications for the automatic diagnosis of agricultural diseases, identifying plant pests, predicting the number of crops, etc., have been developed. This paper involves a presentation of the Internet of Things system in agriculture and its deep learning applications. It summarizes the most essential sensors used and methods of communication between them, in addition to the most important deep learning algorithms devoted to intelligent agriculture.