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Abstract
A robust system that classifies various hand gestures would greatly help those using prosthetic limbs. Recently, emphasis
has been placed on extracted features from the High Density - surface Electromyography (HD-sEMG) signals and
the size of segmentation windows which augment the recognition accuracy. This paper proposes a hand gestures
identification system, in which HD-sEMG signals are employed, and is supported by Force Myography (FMG) signals
for this mission. Several feature types have been extracted from FMG and HD-sEMG signals such as MEAN, RMS,
MAD, STD, and Variance, these features have been validated under some classifiers such as decision tree (DT), linear
discriminant analysis (LDA), support vector machine SVM, and k-nearest neighbor (KNN), in which results showing that
MEAN and RMS features are superior to others, while the best classifier is SVM. Several experiments have been achieved
by the MATLAB platform to validate the proposed system, in which, a database of HD-sEMG signals comprising 65
isometric hand gestures is employed, where two (8×8) electrodes and 9 force sensors are used to collect the FMG data.
This data was derived from 20 intact participants, the first preprocessing step was applied during the recording stage.
Ten gestures are chosen to be classified from the 65 hand gestures. Results show the success of the proposed system
while the classification accuracy arrived at 99.1%.
Keywords
Hand Gesture, HD-sEMG, FMG, Features Extraction, Classifications.

NOMENCLATURE

To familiarize oneself with the scientific notations used in this
paper, Table I provides the convention applied in this paper.

I. INTRODUCTION

An estimated three million people worldwide are using or
need a prosthetic hand [1]. Hence, the need for an artificial
limb that is easy to handle is one of the issues that preoccupies
scientists and engineers. Many prosthetic devices are often
restricted to producing only basic functions, such as opening-
closing. This limitation was the motivation to improve the

gesture recognition system by any means, therefore it could
contribute to the design of the prosthetic device controller [2].

The history of hand gesture recognition (HGR) systems
started with the invention of glove-based control interfaces [3].
Over the past 35 years, many successful products have de-
veloped with high-efficiency performance. Gestures (hand
movements) result from the nervous system and muscle in-
teraction. Muscles controlling the hand are located in the
nearest parts of the hand and they have long, sometimes mul-
tiple tendons crossing several joints and sometimes acting
on various fingers [4]. Thus, control of hand movements re-
quires a complex pattern of neural activation and self-control
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TABLE I.
THE LIST OF ABBREVIATIONS THAT USED IN THIS PAPER.

Symbol Description
AI Artificial Intelligence
CNN Convolution Neural Network
CNT/PDMS Carbon Nanotube/Poly(dimethylseloxane)
CT-HGR Compact Transformer-based Hand Gesture

Recognition
CWT Continuous Wavelet Transform
d-biLSTM dilated bi-directional Long Short-Term

Memory
DAQ Omega Data Acquisition
DB-a Database-a
DB-b Database-b
DB-c Database-c
DNN Deep Neural Networks
DT Decision Tree
DTBO Driving Training Based Optimization
DTW Dynamic Time Warping
ECG Electrocardiography
EMG Electromyography
FDF Frequency Domain Features
FFT Fast Fourier Transform
FMG Force Myography
GNNs Graph Neural Networks
HD-sEMG High-density surface Electromyography
HGR Hand Gesture Recognition
HOG Histogram Oriented Gradient
ISVM Incremental Adaptive SVM Classifier
KNN K-Nearest Nearest Neighbor
LDA Linear Discriminant Analysis
LSTM Long Short-Term Memory
MAD Mean Absolute Deviation
MDF Median Frequency
ML Machine Learning
MMG Mechanomyography
MNF Mean Frequency
NN Neural Network
RCNN Recurrent Convolution neural network
RMS Root Mean Square
RNN Recurrent Neural Network
Skew Skewness
SSC Sign Slope Change
STBO Sewing Training-Based Optimization
STD Standard Deviation
STW Spatio-Temporal Warping
SVMs Support Vector Machine
TDF Time Domain Features
TFDF Time-Frequency Domain Features
TTL Transistor-Transistor Logic
Var Variance
WL Waveform Length
ZC Zero Crossing

of several muscles. The complexity of this system becomes
obvious following amputation of a hand and forearm where
central command and the proximal nerve signal remain op-
erational but without graspers to complete the desired action.
Gestures can be one degree of freedom (require one finger
movement or wrist rotation), two degrees of freedom (two
fingers are needed to perform the posture), or N degrees of
freedom (more than two fingers are required to accomplish
the movement).

Hand gesture recognition sensors are devices that can
detect and demonstrate human hand movements. These sen-
sors use different technologies such as infrared, ultrasonic,
camera-based systems, or wearable devices to capture the
electromyography (EMG)signals accompanying each move-
ment. The main steps of the hand gesture recognition system
are:

• Data Acquisition: The first step in the process is data ac-
quisition. This involves collecting the signals or photos
using the sensors or cameras.

• Preprocessing: The data captured by the sensor or the
camera is usually noisy and contains irrelevant infor-
mation. Preprocessing involves filtering this data to
remove noise. This could demand techniques such as
image segmentation in the case of camera-based sys-
tems, where the hand is separated from the background,
or it could demand filtering in the case of raw data to
remove the power line noise.

• Feature Extraction: Once the data has been prepro-
cessed, the next step is feature extraction. This involves
identifying and extracting the key features that will
be used to recognize the hand gesture. These features
could require the position or shape in camera-based sys-
tems. In wearable systems, they require time-domain or
frequency-domain or time-frequency domain features.

• Classification: The extracted features are then fed into
a classification algorithm. This algorithm uses machine
learning techniques to classify the hand gesture based
on the extracted features. The output of the classifica-
tion algorithm is a label that identifies the hand gesture.

Starting with the data acquisition step mentioned earlier,
in addition to the camera-based systems there are wearable
sensors like surface electromyography electrodes which in-
clude three kinds

1. Spars that contain individual electrodes called seeds.

2. Myo-armband that contains eight electrodes arranged
in a bracelet-like. Both 1 and 2 are called surface-EMG.
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3. High-density surface electromyography electrodes (HD-
sEMG) which is the best among them because they
cover a larger area therefore giving more accurate re-
sults.

That’s why Yu Du et al. [5] used high-density surface
electromyography (HD-sEMG) electrodes which yielded the
CapgMyo dataset with three sub-datasets DB-a, DB-b, and
DB-c that helped in most research [24]. Still, it didn’t involve
all 23 participants.

Mechanomyography (MMG) can also be used to detect
muscular activities. Muscular activity is identified by me-
chanical vibration, which is generated by the tremble of each
muscle fiber. MMG-based methods commonly use an ac-
celerometer and a microphone. However, MMG based on
an accelerometer can only be used when the magnitude of
acceleration is distinguishable compared to acceleration due
to gravity and motion [6, 7].

Recently, the Force Myography (FMG) system that deals
with force signals has gained attention as it greatly supports
the accuracy of gesture recognition when used in Prosthesis
systems [8].

Gesture recognition using a camera faces many challenges.
These include diverse contexts, multiple interpretations, low
visibility, low contrast, and spatial and temporal differences in
gestures. In addition, the intensive computations to separate
the hand from a complex background and diverse lighting
conditions also contribute to the difficulty of achieving high
performance and accuracy in gesture recognition. In [9], Rui
Ma et al. preprocessed the image data collected by the depth
information sensor and then extracted the corresponding hu-
man pose image features, which is the region of interest, and
finally used the appropriate classification algorithm to classify
the pose. In addition, this method is impossible to use for
amputees.

Preprocessing data is the second step in the hand gesture
recognition system, which includes, filtering, to remove the
noise of the power line signal which can be around 50 or 60
Hz, or filtering data to choose the period when the gesture is
more effective, and then segmentation, in which the data will
be available to deal with by the machine learning algorithms
because they can’t deal with huge data, and finally normaliza-
tion, sometimes is needed when data have large or very small
values. Machine learning algorithms may struggle to process
huge datasets effectively without appropriate preprocessing
and optimization.

The third step is the feature extraction which directly
affects the classification accuracy value. As an example,
Haiqiang Duan et al. [10] used two-dimensional root-mean-
squared (2D RMS) of the monopolar sEMG recordings ac-
quired from 4 × 8 × 8 channels (four electrodes with eight
rows and eight columns of electrodes) as a spatial extracted

feature. Harun Güneş et al. [11] used Continuous Wavelet
Transform (CWT) which is one of the time-frequency domain
feature extractors. Hanady Jaber et al. [12] used Amplitude
and intensity features compounds with Histogram Oriented
Gradient (HOG) features to improve the classification accu-
racy. Generally, features can be divided into many categories,
time domain features (TDF) like root mean square (RMS),
standard deviation (SD), variance (V), zero crossing (ZC),
skewness (S), and many other time domain features, then there
are frequency domain features (FDF). For frequency-domain
features, the function’s FFT (Fast Fourier Transform) and the
corresponding power spectrum must first be obtained. Then,
the mean, variance, and peak of the band power spectrum
can be evaluated, as well as many other frequency-domain
features. Lastly, there are time-frequency domain features
(TFDF) which include a transform window technique. With
this method, wide time resolution and narrow frequency reso-
lution at high frequencies, narrow time resolution, and wide
frequency resolution at low frequencies are obtained because
of the changing window size which is very suitable for signals
with abrupt changes like EMG or ECG signals.

For the classification stage, to improve the accuracy of
classification, intuitiveness, and control performance of hand
prosthetic systems, Artificial Intelligence (AI) algorithms
range from conventional Machine Learning (ML) models to
highly complicated Deep Neural Networks (DNN) [13, 14].
Conventional ML models, such as SVMs and LDAs, utilized
for sEMG-based hand gesture recognition, typically work
well even when dealing with small datasets, which depend on
manual extraction of handcrafted (engineered) features, which
limits their generalizability as human knowledge is needed
to find the best set of features. Milad Jabbari et al. [15] used
a novel feature extraction method. Dynamic time warping
(DTW) was employed to efficiently capture the nonlinear simi-
larity between the EMG signals. For the temporal aspect, they
developed a novel feature, named spatio-temporal warping
(STW). The limitation of this study is that the DTW algorithm
may prove too complex for real-time implementation and
may require additional hardware for parallel processing. Abid
Saeed Khattak et al. [16] developed an efficacious scheme for
hand gesture recognition using SDTO (which is a combination
of Sewing Training Based Optimization). In which, signal
pre-processing is done through Gaussian filtering. Thereafter,
desired and appropriate features are extracted. Following that,
effective features are chosen using SDTO. At last, hand ges-
ture identification is accomplished based on DRN, and this
network is effectively fine-tuned by SDTO, which is a combi-
nation of Sewing Training Based Optimization (STBO) and
Driving Training Based Optimization (DTBO). The designed
model has gained a maximum accuracy of 94.3%. The dataset
used in this study was based on three wearable MYO-armband
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sensors that give less accuracy than HD-sEMG electrodes
since the last one covers a larger area of the participant’s fore-
arm. Silvia Maria Massa et al. [17] introduced the use of
Graph Neural Networks (GNNs) to process HD EMG data
for hand gesture recognition of people with an amputation
who use a robotic prosthetic hand. The researchers obtained
an average classification error rate of 8.75% with a standard
deviation of 4.92, and 45 out of 65 gestures were detected with
an error rate of less than 10%. This method can be applied to
robotic arm control, but unlike this work, may be problematic
due to the reduced residual muscle capacity of disabled people.
Various approaches have been proposed to identify movement
intuition and lead to promising achievements. Hanady Jaber
et al. [7, 12, 14] used conventional classifiers represented by
several types of Support Vector Machine (SVM) classifiers
such as the original SVM model and an incremental adaptive
SVM classifier (ISVM) these proposed systems achieved good
accuracy and robustness in performance, but the shortages in
this study have not compared with other conventional classi-
fiers for the same case study. Figure 1 the common system for
hand gesture recognition using wearable EMG sensors.

In this work ten gestures were selected from a combination
of 65 gestures database [18], The sEMG data were recorded
at the level of the forearm from 20 able-bodied and healthy
participants with two anterior EMG electrodes and 9 force
gauges that record the force accompanied with these EMG
signals. This study aims to classify those ten gestures using
the force signals accompanied by the HD-sEMG signals. The
advantage of FMG over EMG is that FMG signals have shown
a higher overall stability over time. In addition, the variance
of the signal is lower than EMG, and FMG signals have shown
a distinct pattern in transient responses. Force signals also
require fewer force-sensing resistors (pressure gauges) to de-
tect a change in pressure due to the contraction of the muscles.
The overall implementation of FMG is less expensive in terms
of sensors and equipment requirements [8]. In comparison
with other existing works, our work is applicable because all
signals were recorded in an isometric manner to simulate the
lost hand.

The proposed system classified the desired gestures through:

1. The desired data of the ten gestures was separated for
the five repetitions.

2. A suitable window size was selected for segmentation
(62.5 and 125 ms) consequently.

3. Suitable features were elected for their importance in
machine learning-based algorithms, five time-domain
features were evaluated, RMS, MAD, STD, Var, and
Mean).

4. The data have been split into training (80%) and testing
(20%) data.

5. The classification process was implemented with the
help of four machine learning algorithms (DT, LDA,
SVM, and KNN) to optimize the performance of the
suggested system and compare results.

The proposed system has been validated and performance
evaluated through the MATLAB platform. Several experi-
ments have been achieved, in which, the results show that
force signals can be used to design a robust hand gesture
recognition system to improve classification accuracy. The
contribution of this work can be considered as:

1. Using the FMG signal, which is supported by the HD-
sEMG signal.

2. Selecting a suitable window size for the segmentation.

3. Robust features have been employed which are RMS,
MAD, STD, Var, and Mean.

4. For the proposed system, simple and low-cost classifi-
cation algorithms have been chosen (DT, LDA, SVM,
and KNN).

II. METHODOLOGY

Figure 2 illustrates the block diagram of the proposed sys-
tem; the dataset includes HD-sEMG and FMG signals that
have been used for hand gesture identification [18]. The sig-
nals have been passed through the preprocessing to remove
all unwanted data. Ten gestures data was separated and re-
labeled, furthermore, the segmentation has been performed.
Five time-domain features have been extracted, which will be
used in the classification process. Eventually, the classifica-
tion assignment was accomplished successively through four
machine-learning algorithms.

A. Data Acquisition
The biosignal is an electrical signal that is generated with any
movement of the biological organs and can be recorded as a
voltage signal which is called an Electromyography (EMG)
signal. This signal is accompanied by another myography
signal that is responsible for muscle contraction, which is
denoted by the force myography signal (FMG). These two sig-
nals are the dataset source used in this study, and the recording
system is shown in Fig. 3. The block diagram of the recording
protocol can be observed in Fig. 4. [18]
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Fig. 1. Common hand gesture recognition system.

Fig. 2. The block diagram of the proposed system.

1) The HD-sEMG Dataset
The dataset used in this work [18] is a recently released HD-
sEMG dataset that contains two 64-electrode square grids (8 ×
8) with an inter-electrode distance of 10 mm (ELSCH064NM3,
OT Bioelettronica, Torino, Italy), which were positioned on
extensor and flexor muscles of the forearm of 20 participants
(14 men and 6 women) aged between 25 and 57 years (mean
age 35 years). The electrode used is shown in Fig. 5a and
the layout of both electrodes is illustrated in Fig. 5b. The
participants performed 65 hand gestures that are combinations
of three groups, the first group contains 16 gestures each of
one degree of freedom, 42 gestures each of two degrees of
freedom, and 7 gestures each of N degree of freedom. The sub-
jects performed each gesture 5 times Each of those repetitions
would last for 5 seconds. The signals were recorded through
a Quattrocento (OT Bioelettronica, Torino, Italy) bioelectrical
amplifier system with a 2048 Hz sampling frequency. Pream-
plifiers with 5x gain are located at the electrode connectors,
amplifiers within the Quattrocento device, and the A/D con-

Fig. 3. Data acquisition [18].

Fig. 4. Recording protocol [19].

verters. Overall, including preamplifiers and amplifiers, the
HD-sEMG signals were amplified 150 times. Figure 6 shows
the five trials for the first participant with the EMG signals
implemented during each trial of the first gesture recorded
from the extensor muscles.

2) Force Recording
All forces were recorded instantaneously with EMG signals in
an isometric manner by using a custom-made force measure-
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(a) The electrode used to record EMG signals.

(b) The electrode used to record EMG signals.

Fig. 5. HD-sEMG electrode square grids (8×8) [18].

ment device. The device is shown in Fig. 7. The reason for
choosing an isometric setup was to simulate muscle behavior
in a forearm amputee where the remaining muscles have a
relatively small contraction amplitude.

The force measurement device comprises nine contract
pressure meters, four measuring D2-D5 (flexion-extension)
forces, two measuring thumb (flexion-extension), and (abduction-
adduction), and three measuring wrists (flexion or extension),
(radial or ulnar), and (pronation-supination) deviation. Those
nine devices were interfaced through 3D-printed finger braces
which were specially chosen for each subject. Using the
braces, the fingers were placed in a neutral position, approxi-
mately in the middle of the range of motion. Figure 8 repre-
sents the force signal that coincides with the HD-sEMG signal
that shown in Fig. 6 [18].

Fig. 6. The EMG signals of the five trials for the first
participant [18].

Fig. 7. (a) Force measurement device. (b) 3D printed finger
brace [19].

B. Hand Gestures
The hand gestures used in this study are shown in Table II. The
first two gestures are one degree of freedom (1DoF), while
the next six gestures are two degrees of freedom (2DoF), and
the last two ones are N degree of freedom (NDoF).

C. Data Preprocessing
Preprocessing is an efficient stage to enhance the robustness
and reliability of data concerning potential pollutes. Augment-
ing the signal-to-noise ratio can improve the discriminating
characteristics of EMG or force signals. The preprocessing
steps can be seen in Fig. 9.

1) HD-sEMG Filtering
The first preprocessing step for the raw HD-sEMG dataset
(sampled at a rate of 2048 Hz) was done during recording with
a hardware high-pass filter at 10 Hz and a low-pass filter at
900 Hz. It was filtered offline to remove power line noise with
a zero-phase 3rd order band-pass Butterworth filter centered
at 50 Hz with 4 Hz.
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TABLE II.
THE TEN GESTURES USED IN THIS WORK.

Label Gesture Name Gesture Label Gesture Name Gesture

1 Wrist: bend 6
Ring finger: bend
+Thumb: down

2 Wrist: stretch 7
Middle finger: bend

+Thumb: down

3
Little finger: bend
+Ring finger: bend 8

Index finger: bend
+Thumb: down

4
Little finger: bend

+Thumb down 9 Palmer grasp

5
Ring finger: bend

+Middle finger: bend 10 Pointing
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Fig. 8. Force signal accompanied with the EMG signal in Fig.
6.

Fig. 9. Preprocessing steps flow chart.

2) Force Normalization
The measured force signals were normalized to analog signals
in the range of 0-5 V for the force range ± 100 N, where
in neutral position (0 N) the force sensors value was 2.5 V.
The signals from the force sensors were digitalized using a
NI-USB 6218 (National Instruments, Austin, Texas, USA)
A/D with 16-bit amplitude resolution and sampling frequency
of 200 Hz. The contemplation and the recording of the signals
were programmed by a custom-made LabVIEW (National In-
struments, Austin, Texas, USA) program. The same program
used to control synchronization between the Quattrocento and
the force signals by generating TTL pulses recorded by both
devices. The pulses generated by one of the digital outputs of
NI-USB 6218 were 0.2 s wide and occurred every 2 s. These
forces are given in volts [V], and the relation between sensor
analog output and the force is as follow:

force = analog voltage ×40−100 [V ] (1)

The protocol of EMG signal and force data acquisition is
shown in Fig. 3.

HD-sEMG signals were displayed on a laptop screen after
being amplified while hand forces and cues were shown on a
separate screen on a table in front of the participant.

3) Reconstructing Data
The force myography signals recorded by the nine pressure
sensors are used as a dataset to classify the ten gestures shown
in Table II. The third Preprocessing step started with separat-
ing the force data for each gesture with its repetitions and then
labeling the new data for using them later in the classification
procedure.

4) Segmentation
Segmentation is a necessary preprocessing step to analyze any
huge data because it reduces the dimensions of data which
ensures better recognition when feeding it to machine learning
classifiers, then the process of training will be faster and less
computational, and segmentation is also preferable with non-
stationary signals like EMG signals [20].

Windowing is a segmentation technique that can be imple-
mented by two schemes, overlapping windowing and adjacent
(non-overlapping) windowing, in adjacent window segmenta-
tion, successive windows are extracted from a time series by
incrementally increasing an index by the window size. Over-
lapping windows have common parts between windows. Both
schemes are shown in Fig. 10. In [21] Fernando D Farfán et
al. suggested that the optimal window length was 200 ms, but
in [22] Rami N. Khushaba et al. proved that, even with win-
dows sizes as small as 32 ms, one can achieve considerably
high classification accuracy that reaches to 90%.

In this work, adjacent (non-overlapping) windowing is
used to segment the force signals into frames each of 128
samples (62.5 ms) for the first experiment and 256 samples
(125 ms) for the second experiment.

Fig. 10. Overlapping and non-overlapping segmentation.

D. Feature Extraction
Useful information can be extracted by transforming raw data
into more effective features that can be processed while main-
taining the information in the original data set. It leads to
better results than feeding machine learning directly to the
raw data.

Feature extraction can be implemented manually (an engi-
neer or a scientist can choose features that are relevant for a
given problem) like the mean of a window or automatically
(specialized algorithms or deep networks are used to extract
features automatically from signals or images without the
need for human stepping in) like wavelet scattering.

Basically, there are three categories to extract features:
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1. Time domain features (TDF): like Mean Absolute Value
(MAV), Variance, Waveform Length (WL), Zero Cross-
ings (ZC), Root Mean Square (RMS), Slope Sign Changes
(SSC).

2. Frequency domain features (FDF): the Median Fre-
quency (MDF), the Mean Frequency (MNF), and the
Power Spectral Density, which can be extracted after
transforming data to Fourier Transform (FT) or fast
Fourier Transform (FFT).

3. Time-frequency domain features (TFDF): A wavelet
scattering network which can derive, with minimal con-
figuration, low-variance features from real-valued time
series and image data for use in machine learning and
deep learning applications. A key advantage it has over
Fourier transforms is temporal resolution because it cap-
tures both frequency and location information (location
in time).

Many researchers are still investigating new algorithms
for extracting features that gives the best recognition accuracy.
In [23] Zhongfu Ye et al. proposed a method employs higher
order local autocorrelation (HLAC) features for feature extrac-
tion, while in [24] [25] Hanadi A Jaber et al. proposed spatial
features (AIH)that evaluated by combining HOG features of
HD-sEMG map and intensity features calculated from the
average of segmented HD-sEMG map which is denoted as
(AIH) features that gave an accuracy reaches 99.08%.

In this work, five-time domain features are chosen to be
extracted from the segmented signals; these are:

1. Root Mean Square (RMS)

RMS =

√
1
N

n

∑
i=1

|xi|2 (2)

2. Mean Absolute Deviation (MAD)

MAD =
1
N

N

∑
j=1

|xi − x̄| (3)

Where x̄ is the mean

3. Standard Deviation (STD) represents the difference be-
tween each sample of the signal and its mean value

ST D =

[
1

N −1

N

∑
1=1

(xi − x̄)2

]1/2

(4)

4. Variance (Var) Variance represents the power of the
signal

Var =
1

N −1

N

∑
i=1

x2
i (5)

5. Mean value (Mean)

Mean =
1
N

N

∑
1=1

xi (6)

E. Classification Process
Classification is the task of assigning a class label to an in-
put pattern. The class label indicates one of a given set of
classes. The classification is carried out with the aid of a
model obtained using a learning procedure. According to the
type of learning used, there are two categories of classification
algorithms, one using supervised and the other using unsu-
pervised learning. Supervised learning makes use of a set of
examples that already have the class labels assigned to them.
Unsupervised learning attempts to find inherent structures in
the data.

Many classifiers are categorized as supervised learning
like the support-vector machine (SVM), k-Nearest Neighbors
(kNN), Linear Discriminant Analysis (LDA), and Random
Forests (RF). Boser et al. [26] introduced a training algorithm
that maximizes the margin between the training patterns and
the decision boundary by a linear combination of supporting
patterns. This algorithm was trained to assign new examples
to one of two categories, which was later called support vector
machine (SVM).

Deep learning classifiers are branches of supervised algo-
rithms. These classifiers are required to encode suitable distri-
bution properties from raw signals to represent the bias and
weight of neural network (NN) architecture. Deep learning
needs a huge amount of data to achieve optimal performance
such as convolution neural network CNN, recurrent neural
network RNN, and Recurrent Convolution neural network
RCNN. In [27] Silvia Maria Massa et al. exploited explain-
able AI algorithms to automatically refine the graph topology
based on the data in order to improve recognition rates and
reduce the computational cost.

In this work results were recorded from hold-out valida-
tion where data acquired for each gesture from the 20 subjects
was divided into 80% training set that is used to train four
classifiers then the rest data (20%) is used to test classifiers
and extract the accuracy. This was achieved using the classifi-
cation learner in MATLAB. The classifiers used are:

1) Decision Tree (DT)
DT is a supervised learning algorithm commonly used in ma-
chine learning to model and predict outcomes based on input
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data. It is a tree-like structure where each internal node tests
on a predictor, each branch corresponds to the predictor value
and each leaf node represents the final decision or prediction.
They can be used to solve both regression and classification
problems. Decision trees can handle various data types (dis-
crete or continuous values), they can also handle values with
missing values.

2) Linear Discriminant Analysis (LDA)
LDA is also a supervised learning algorithm used for classifi-
cation tasks in ML. Its technique is to find a linear combination
of features that best separates the classes in a dataset, it works
by distinguishing the data onto a lower-dimensional space that
maximizes the separation between the classes. It does this by
finding a set of linear discriminants that maximize the ratio
of between-class variance to within-class variance. In other
words, it finds the directions in the feature space that best
separate the different classes of data. It is sometimes used
as a feature extraction methodology. The LDA classifier was
used because it can manage high-dimensional data, it handles
multicollinearity, and its efficiency of computation.

3) Support Vector Machine (SVM)
SVM is a supervised machine learning algorithm used for
both classification and regression. The main objective of
the SVM algorithm is to find the optimal hyperplane in an
N-dimensional space that can separate the data points in dif-
ferent classes in the feature space. The hyperplane tries to
maximize the margin between the closest points of differ-
ent classes as much as possible. SVMs perform better with
high-dimensional data and are less prone to overfitting.

4) k-Nearest Neighbor
The k-NN is one of the supervised machine learning algo-
rithms. It is a classification and regression algorithm where
neighbors contribute according to distance. Each neighbor
weighs in proportion to the NB (Naı̈ve Bayes) classifier. Naı̈ve
Bayes is part of a family of generative learning algorithms,
meaning that it seeks to model the distribution of inputs of
a given class or category. Unlike discriminative classifiers,
like logistic regression, it does not learn which features are
most important to differentiate between classes, which is 1/d,
where d is the distance to the neighbor. This work selects
k as 5 and Euclidean distance is used. KNN is simple to
implement because it only requires a k value and a distance
metric, and it adapts easily when new training samples are
added, the algorithm adjusts to account for any new data since
all training data is stored in memory. The four classifiers
were chosen for their simplicity of implementation, lack of
huge data requirements (unlike neural networks), and efficient
computation, ensuring quick results.

F. Performance Metrics
The problem often confronted in classification interests mak-
ing a suitable choice of a classification metric. The success
of a classification metric is often tied to data because differ-
ent classification metrics perform differently given different
datasets. A classification metric can be constructed using
different methods, but in most cases, the advantages and draw-
backs of each one are often data-dependent. It is important
to note that each of these metrics has a connection to the
confusion matrix [28].

1) Confusion Matrix
A confusion matrix is an nxn table with information about the
predictions of a classification model, it contains information
about the true positive (TP), true negative (TN), false positive
(FP), and false negative (FN).

2) Classification Accuracy
The accuracy rate can be defined as the number of correct
classifications over the entire test set or contrarily the fraction
of correct prediction of a classifier, over the entire test set.
Based on the confusion matrix it is defined as:

Accuracy =
T P+T N

T P+T N +FP+FN
(7)

III. EXPERIMENTS AND RESULTS

The selection of window size and features has a great influ-
ence on the recognition accuracy. Several experiments were
executed to evaluate the performance of the proposed frame-
work under different configurations. These experiments were
carried out utilizing the following sequence of algorithmic
methods:

1. Collect the force myography signals data for the ten
chosen gestures shown in Table III with their five repe-
titions from the total set of 65 gestures dataset provided
in [4].

2. The collected data has been given labels to recognize
each gesture, these labels refer to every gesture by its
number arranged in the same sequential order in Table
III.

3. Every force column signal was segmented into a proper
window size according to every experiment procedure.

4. The new segmented data was relabeled based on the
new data size.

5. Adequate features were extracted for every window of
the column data signal. The features are mentioned
with the experiment name.
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TABLE III.
THE AVERAGE CLASSIFICATION ACCURACY OF SINGLE
TD FEATURE/CLASSIFIER COMBINATIONS ACROSS 20
SUBJECTS.

Average Classification Accuracy
Feature Type DT LDA SVM KNN

RMS 99 96.7 99 98.7
Mean 99 96.9 99 98.7
MAD 35.9 33.4 43.7 36.7
STD 37.9 32.5 44.4 37.3
Var 36.9 16.2 41 31.8

6. The ”Classification Learner” in MATLAB was used to
classify the gestures with four classification algorithms
mentioned in 2.6 after splitting data into 80% training
and 20% test data.

7. The analysis of experiments and the comparison of
the results were implemented individually for every
experiment.

A. Extracting Features in the Case 62.5 ms Window Size
In this experiment, the proposed features are validated in the
case of 62.5 ms windows width, in which the classification
accuracy of the classifier has been evaluated for each subject,
furthermore, the average classification accuracy of the 20
participants has been calculated, as shown in Table III.

From Table III it can be seen that the RMS and the Mean
features gave superior results upon the remaining three fea-
tures, also it is clear that with RMS, Mean, STD, and Var
features the SVM (Support Vector Machine) and the DT (De-
cision Tree) classifiers outperformed the other two classifiers,
while for MAD features the SVM and KNN classifiers proved
their performance efficiency.

Generally, the SVM classifier proved comparatively supe-
rior when compared to the other classifiers, and contrarily the
LDA classifier ranks last in terms of accuracy of classification.
All the five time-domain features established in Table III can
be observed in Fig. 11.

Addressing the sixth participant data to investigate fea-
tures and their effect on the system performance. Figure 12a
represents the distribution of data after evaluating the RMS
feature for the segmented windows. Each one of the ten ges-
tures is illustrated with a different color, so it obviously can
be separated easily, and the classification performance was so
high that the accuracy reached 99% as can be seen from the
scattering plot of the predicted model as shown in Fig. 12b
and its confusion matrix as shown in Fig. 12c. Also extracting
the mean value recorded a promising result reached 99.8% as
shown in Fig. 13.
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Fig. 11. Average Accuracy of classifiers vs several features
type in the case of 62.5 ms window size.

Moving to the mean absolute deviation (MAD), extracting
this feature led to haziness results as shown in Fig. 14, because
most of the samples have the same MAD value according to
normalization which made values between (0-5), therefore,
the accuracy recorded was much less reached 64.1% in this
case.

Fig. 15 implements the distribution of the ten classes after
evaluating the standard deviation (STD) and the accuracy
value is close to that achieved when the (MAD) feature was
applied. The last feature chosen in this study was the variance
whose results are shown in Fig. 16 and these results come in
the last of the selected features list for their worse performance.
From observing data and during the experiment performance
recording for participants individually the variance recorded
extremely bad results reached 16.2% accuracy with the LDA
classifier. All of the mentioned outlines can be seen and
recognized in Fig. 11.

It is crystal clear from Fig. 17 that with RMS and Mean
features (a and e) how the data was distributed around a value
that differs from one class to another, made the recognition
process easier with accuracy records higher than those ac-
quired from the MAD, STD, and Var features (b, c, and d)
consequently.

B. Merge Features in the Case of 62.5 ms Window Size
From the previous experiment, we observed that RMS and
MEAN are the best, and MAD, STD, and VAR are given less
classification accuracy, therefore in this experiment, trying
to increase the classification accuracy by proposing a feature
that is the merging of the best together (RMS and MEAN),
while the other experiment is to test the ability to improve
the performance of other features by merging it (MAD, STD,
and VAR), the results of experiments are shown in Table
IV, furthermore, the average accuracy for 20 participants is
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(a) Scattering plot before training. (b) Scattering plot for predicted model. (c) Confusion matrix for predicted model.

Fig. 12. RMS of the sixth subject data.

(a) Scattering plot before training. (b) Scattering plot for predicted model. (c) Confusion matrix for predicted model.

Fig. 13. Mean of the sixth subject data.

TABLE IV.
THE AVERAGE CLASSIFICATION ACCURACY OF THE TWO
COMBINATIONS OF FEATURES ACROSS 20 SUBJECTS.

Average Classification Accuracy (%)
Features Type DT LDA SVM KNN
RMS+Mean 99 96.7 99 99.5
MAD+STD+Var 38.6 37.3 45.9 37.9

evaluated.
To have a good view so that the results can be judged and

compared, Figure 18 shows the results for both experiments,
where it can be seen that the combination of RMS and MEAN
led to a modest improvement in the classification accuracy
value, while the other feature led to a better improvement
but the classification accuracy is still much lower than the
ambition.

C. Merge All Proposed Features in the Case of 62.5 ms
Window Size

Combining the five time-domain features can give a com-
prehensive evaluation to improve classification accuracy and
control prostheses more effectively. The recognition accuracy
recorded is shown in Table V. From Fig. 19 the SVM classifier
(the red line) accomplished the best results, and the LDA clas-
sifier (the green line) scored the least accuracy, while both DT
and KNN (yellow and blue) are close in outcomes. Also, some
subjects (participants) recorded performance gained mastery
over others. This can be due to skin impedance or the position
of FMG sensors. As an example (from observing data) subject
16 took a time longer than other participants to execute each
gesture which influenced his results to be the lowest in all
experiments.

Succeeding with the same protocol to evaluate every ges-
ture’s accuracy and extracting the same five time-domain
features proposed in this work, in this experiment, the first
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(a) Scattering plot before training. (b) Scattering plot for predicted model. (c) Confusion matrix for predicted model.

Fig. 14. Mean absolute deviation of the sixth subject data.

(a) Scattering plot before training. (b) Scattering plot for predicted model. (c) Confusion matrix for predicted model.

Fig. 15. Standard deviation of the sixth subject data.

gesture was separated and gathered for the twenty subjects,
but this time they were given labels from 1 to 20 to examine
the system ability to recognize the gesture from others. The
same procedure was applied for the rest nine gestures. The
results are shown in Table VI.

Figure 20 reveals the robustness of the suggested protocol
in recognizing the ten gestures used in this study. Only the
LDA classifier can be excluded from the results.

D. Merge All Proposed Features in the Case of 125 ms
Window Size

To evaluate the system validation in the case of changing
window size, this experiment was implemented, where the
data was segmented into non-overlapping windows for each
of 256 samples (125 ms), then the five features were extracted,
and finally, data was split into 80% training and 20% test data.
Table VII illustrates the performance accuracy achieved.

Figure 21 shows that all classifiers are relatively close in

their results unlike the previous experiment, where the LDA
classifier was far off the other three classifiers.

Comparing the results of the previous experiment and
those of this experiment, it is clear that the system accuracy is
relatively less when the segmented window is 125 ms, but it
still gives remarkable results. Figure 22 represents the confu-
sion matrix for the sixth subject for both the last experiments
(62.5 and 125 ms window size) with the SVM classifier which
recorded the highest accuracy. The accuracy was 99.4% for
62.5 ms windowing and 99.1% for 125 ms windowing.

IV. COMPARATIVE ANALYSIS

In comparison with existing results, first, we’ll compare re-
sults achieved from the same dataset we used in this work by
other researchers when the suggested systems were designed
based on the EMG signals, in [13] M. Montazerin et al used
the whole 65 isometric hand gestures of the 20 subjects. The
proposed CT-HGR framework was applied to 31.25, 62.5, 125,
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(a) Scattering plot before training. (b) Scattering plot for predicted model. (c) Confusion matrix for predicted model.

Fig. 16. Variance of the sixth subject data.

TABLE V.
THE ACCURACY OF TWENTY SUBJECTS FOR THE THIRD
EXPERIMENT.

Classification Accuracy (%)
Subjects DT LDA SVM KNN
Sub 1 99.3 97.2 97.9 98.7
Sub 2 99.2 98.7 99.6 99.3
Sub 3 98.9 94.4 99.7 98.7
Sub 4 99.9 98.9 99.7 99.2
Sub 5 96.2 93.6 98.9 98.6
Sub 6 99.3 97.2 98.3 98.9
Sub 7 99 98.9 99.6 99.6
Sub 8 99.8 98.5 100 99.9
Sub 9 99.7 96.8 99.7 99.6
Sub 10 99.7 99.9 99.9 99.6
Sub 11 99.3 99.6 100 99.7
Sub 12 99.3 96.7 98.9 98.5
Sub 13 98.6 92.5 98.3 98.1
Sub 14 99.3 99.2 99.7 99.2
Sub 15 99.3 98.2 99.6 99
Sub 16 97.9 90.7 94.7 97.7
Sub 17 99.7 97.8 99.9 99.7
Sub 18 99.6 99.9 99.7 99.4
Sub 19 98.9 97.6 99.2 98.7
Sub 20 98.9 97.1 98.6 99.6
Average 99.1 97.2 99.1 99.1

TABLE VI.
THE ACCURACY OF THE TEN GESTURES.

Classification Accuracy (%)
Gestures DT LDA SVM KNN
G 1 98.3 94.7 99.2 98.8
G 2 98.6 96.1 99.5 98.9
G 3 98.5 95 99.4 98.5
G 4 98.8 98.2 99.4 99.2
G 5 99.4 97.2 99.5 98.5
G 6 98.3 95.8 99.8 99.2
G 7 98.3 96.5 99.5 99.1
G 8 98.5 96.7 99.7 98.8
G 9 96.7 94.7 97.9 98.6
G 10 97.8 98 99.4 98.6
Average 98.3 96.3 99.3 98.8

and 250 ms window sizes of the EMG dataset utilizing 32, 64,
and 128 electrode channels. The average accuracy over all the
participants using 32 electrodes and a window size of 31.25 ms
was 86.23%, which gradually increased till reaching 91.98%
for 128 electrodes and a window size of 250 ms. The CT-HGR
achieves an accuracy of 89.13% for instantaneous recogni-
tion based on a single frame of HD-sEMG image. Also, [22]
Khushaba and Nazarpour used different window sizes (from
32 ms to 256 ms) with 128 (8 and 65 hand movements) to
256 electrodes (34 hand movements) to explore the impact of
varying the number of electrodes and segmentation windows
size on EMG decoding accuracy. The analysis considered
varying windows and electrodes from 8 to 128/256. Sim-
ple time-domain and auto-regressive model parameters were
extracted to train an LDA classifier to identify the intended
hand motions. The recorded accuracy reached 90%. Another
existing study used the same EMG dataset [29], where Azar
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(a)                                                                   (b)                                                    (c)

(d)                                                                        (e)

Fig. 17. The boxplot of the five features: (a) RMS (b) MAD (c) STD (d) VAR (e)MEAN.

0

20

40

60

80

100

120

RM
S

M
ea

n

RM
S+M

EAN
M

AD
STD

Var

M
AD+STD+Var

A
cc

ur
ac

y 
of

 C
la

ss
ifi

ca
tio

n

Features type

DT
LDA
SVM
KNN

Fig. 18. Comparison of single and combined features.

et al. proposed a sequential decoder of transient HD-sEMG
that achieved 73% average accuracy of all the 65 gestures for
partially-observed subjects through subject-embedded transfer
learning, leveraging pre-knowledge of HGR acquired during
pre-training. The mentioned notes can be seen clearly in Table
VIII.

Next, the effectiveness of the suggested machine learning-
based hand movement recognition system will be evaluated
against two previously published studies. In [30] the authors
used the force signals with the KNN classifier and tried dif-
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Fig. 19. The chart of experiment no. (3) performance.

ferent values for k (from1 to 9). The highest accuracy was
achieved when k=2 and it was 95%. The FMG was col-
lected from 8 subjects with ten trials per gesture. In [8] the
classification of hand gestures based on FMG signals was
performed. The best classification with 95% accuracy, was
achieved through Decision Tree Learning and SVM classi-
fiers. The best classification with 95% accuracy, was achieved
through Decision Tree Learning and SVM classifiers. These
comparison results can be seen in Table IX.



280 | Darweesh & Rashid

92

93

94

95

96

97

98

99

100

101

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y

Gestures

Gestures Accuracy

DT

LDA

SVM

KNN

Fig. 20. The average accuracy for the ten gestures.
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Fig. 21. The chart of experiment no. (5) performance.

V. CONCLUSION

In this paper, a hand gestures classifier system has been pro-
posed to improve classification accuracy. Two myograpy
signal types have been used (FMG and HD-sEMG). This
system depends on proposed new features that result from
merging RMS, MEAN, MAD, STD, and VAR, in which all
these features have been validated separately and performance
evaluated for each one. The results show RMS and MEAN are
superior to other features. In addition, the effect of segmented
window size has been tested on the classification accuracy, in
which the experiments led to the best size is 62.5 ms despite
the difference being low versus the size of 125 ms. Several
classifiers have been proposed for this mission which are TD,
LDA, SVM, and KNN. Several experiments have been per-
formed to validate the proposed system, in which the SVM
classifier is superior to other classifiers. The results of these
experiments show the ability to use the proposed system in
the prosthesis, furthermore, the proposed features and classi-
fiers appear good classification accuracy reaching 99.1%. The
only limitation of our work is that it wasn’t implemented in
real-time applications with real prosthetic hands to examine
the validity of the proposed system. This can be the goal of

TABLE VII.
THE ACCURACY OF TWENTY SUBJECTS FOR THE FIFTH
EXPERIMENT.

Classification Accuracy (%)
Subjects DT LDA SVM KNN

Sub 1 96.9 96.4 98.6 97.2
Sub 2 99.7 98.9 99.8 99.3
Sub 3 97.8 97.2 99.2 98.0
Sub 4 99.0 97.5 98.9 98.9
Sub 5 96.6 94.7 99.2 96.9
Sub 6 98.3 96.4 98.3 97.5
Sub 7 97.8 98.3 99.8 98.3
Sub 8 98.0 96.4 98.9 98.0
Sub 9 99.2 97.2 99.2 97.2
Sub 10 99.7 99.7 99.0 99.2
Sub 11 98.3 99.7 100.0 99.2
Sub 12 98.0 96.6 98.6 97.8
Sub 13 96.4 94.7 97.5 96.9
Sub 14 99.7 99.2 99.4 99.2
Sub 15 98.3 99.2 100.0 98.6
Sub 16 97.7 91.4 95.7 95.7
Sub 17 99.7 98.0 100.0 99.4
Sub 18 99.2 99.4 99.2 99.2
Sub 19 97.5 98.3 99.7 99.4
Sub 20 97.8 97.8 99.4 98.3
Average 98.3 97.4 98.9 98.2

the future works.
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