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Abstract
Increasing the penetration of Renewable Energy Sources (RES) into power systems created challenges and difficulties in
the management of power flow since RES have variable power production based on their sources, such as Wind Turbines
(WT), which depend on the wind speed. This article used Optimal Power Flow (OPF) to reduce these difficulties and to
explain how the OPF can manage the power flow over the system, taking different cases of WT power production based
on the different wind speeds. It also used Fixable AC Transmission (FACT) devices such as Thyristor-Controlled Series
Compensators (TCSC) to add features to the controllability of the power system. The OPF is a non-linear optimization
problem. To solve this problem, the artificial intelligence optimization technique is used. Particle Swarm Optimization
(PSO) has been used in the OPF problem in this article. The Objective Functions O.F. discussed here are losses (MW),
Voltage Deviation VD (p.u.), and thermal generation fuel Cost ($/h). This article used the wind turbine bus magnitude
voltage and the reactance of TCSC as a control variable in OPF. To test this approach, the IEEE 30 bus system is used.
Keywords
Optimal Power Flow, Wind Turbine, Thyristor-Controlled Series Compensator, TCSC, Particle Swarm Optimization.

I. INTRODUCTION

Wind Turbines (WT) are one of the most widely used Renew-
able Energy Sources (RES) in recent years., so incorporating
WT with power systems will reduce emissions and fuel costs.
The energy production of WT is dependent on the wind speed;
the nature of the wind speed is variable and intermittent. Con-
sequently, since the nature of wind speed, the integration of
WT with power systems has become complicated and faces
many challenges [1]. The Optimal Power Flow (OPF) rep-
resents a significant tool to optimize the performance of the
power system, like the production of generators and their
voltages to achieve minimum cost generation, active power
losses, or other objective functions [2]. The Thyristor Con-
trolled Series Compensator (TCSC) is a Fixable AC Trans-
mission (FACT) device that offers the flexibility to manage

the power flow in lines and adjust the reactance of lines; there-
fore, adding the TCSC to the system is a decent addition to
controlling power systems [3]. A lot of researchers investigate
the combination of OPF, WT, and TCSC with power systems.
Combining stochastic WT power with a power system by us-
ing the Weibull Probability Distribution Function (PDF) for
forecasting the output power of WT with a differential evo-
lution algorithm is adopted to handle various constraints [4].
Model AC-OPF using various types of generation units (ther-
mal, wind, solar, and tidal) with different objective functions
(generation cost, active power losses, voltage deviation, sta-
bility, and contingency) and solving optimization problems
by the symbiotic organisms search algorithm [5]. The authors
in studies [6–9] apply various techniques to solve OPF issues
with the modified IEEE 30 bus test system, the Aquila Op-
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timizer (AO) technique to reduce the total cost of operation,
and the hybrid algorithm phasor particle swarm optimization
and gravitational search (PPSOGSA) applied to reduce the
generation cost with active power generation and voltage mag-
nitude as control variables. The Modified Turbulent Water
Flow-based Optimization (MTFWO) and the White Shark
Optimizer (WSO) algorithms use power output from renew-
able sources as a dependent variable and voltage at the bus
as a control variable. In [10], the authors propose a hybrid
decomposition-based multi-objective evolutionary algorithm
(MOEA) to solve the OPF problem with RES uncertainties.
This proposed algorithm is used to minimize various objective
functions (total cost, total emission, active power loss, and
voltage magnitude deviation) and is tested with standard IEEE
30, 57, and 118-bus test systems. To achieve reactive power
management, minimize power losses, and enhance the voltage
profile the authors in [11] introduce a gravitational search
algorithm (GSA) for incorporating TCSC with power sys-
tems. The Salp Swarm Algorithm (SSA) is proposed in [12]
for solving OPF in power systems by incorporating TCSC.
This approach was validated and tested on IEEE-30 bus sys-
tems to determine optimal control variables (generator bus
power, voltages, and tap changer transformer ratios). Us-
ing the Grey Wolf Algorithm (GWA) to optimize tuning for
control variables with a combination of the WT and TCSC
with power systems to reduce fuel cost, real power losses,
carbon emissions, and voltage deviation, this approach was
validated with the IEEE 57 bus test system under normal and
contingency conditions [13]. The study’s authors [14] solve
OPF in power systems with RES and FACTS with four new
optimization algorithms Slime Mould Algorithm: Artificial
Ecosystem-based Optimization, Marine Predators Algorithm,
and Jellyfish Search. The authors of the study [15] and [14]
introduce the History-based Adaptive Differential Evolution
(SHADE) and Enhanced Hunter-Prey Optimization (EHPO)
methods for solving the OPF with stochastic wind power and
FACTS, considering thermal generation, direct wind power
cost, penalty cost, and reserve cost. In [16], the authors use the
Chaos Game Optimization (CGO) algorithm to solve the OPF
problem in power systems for objective functions (generation
costs, emissions, active power loss, voltage deviation, and
enhancing voltage profiles), the FACTS and RES integrated
with the IEEE 30 bus system, the RES taken as dependent
variables, and probabilistic models.

This article aims to establish an appropriate power sys-
tem approach that integrates power production from WT by
investigating different features of OPF with WT and TCSC.
The reactance of the TCSC is taken as a control variable; the
first case in this article integrates the TCSC with the power
system, and the system is managed by the PSO algorithm. The
following case discusses integrating the WT with the power

system, and the last case integrates the WT and the TCSC
with the power system. The last two cases discuss a crucial
point, when the speed of wind is high (like a storm), the WT
produces the rated power and the system has its base load,
in what way can the algorithm manage the generation of the
other generators to solve this situation? On the contrary, the
second crucial point is when the speed of wind is lower than
in the first case and the WT output power is reduced, so the
PSO how can manage the system. This article emphasizes the
ingenuity of the algorithm to manage the system and optimize
it for the minimum objective function. The rest of the paper
is organized as follows: in section II. problem formulation
of OPF is explained. The PSO algorithm and its steps are
organized in section III. . Section IV. shows the modelling of
WT and TCSC that is used in this paper. The last two sections
are the results and the conclusion respectively.

II. PROBLEM FORMULATION

Essentially, the OPF is an optimization problem to find op-
timal operation parameters for economic dispatch, reducing
power losses, or enhancing the voltage profile [17]. Equations
(1) to (3) describe the problem:

minimum f (x,u) (1)

Subject to

g(x,u) = 0 (2)
h(x,u)≤ 0 (3)

where f is the objective function, g and h are equality and
inequality constraints, respectively. x is a state variable vector
consisting of active power generation at slack bus PG1, gen-
erator reactive power outputs QG, and load-bus voltage VL. u
is a control variable vector such as active power generation
of generators except for the slack bus, voltage magnitude of
generators including the slack bus, tap setting of transformers,
and injected reactive power by capacitor banks.

A. Objective Functions
Three objective functions have been discussed in this article
with its Equations [18], as follows:

1) Total Active Power Losses

f1 = Ploss =
NE

∑
k=1

Gi j(V 2
i +V 2

j −2ViVj cosθi j) (4)

Here Ploss is the active power loss of the network, Vi and Vj are
the bus voltage magnitude; θi j is the difference in the voltage
angle of buses, Gi j is transmission line conductance between
bus i and j, and NE refers to the system branches.
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2) Voltage Deviation

f2 =V D =
NL

∑
k=1

|Vk −1| (5)

Where V D represents the sum of voltage deviation, NL is the
number of load buses, and Vk is the voltage magnitude of the
load bus.

3) The Fuel Cost

f3 = cost =
NGT

∑
i=1

ai +biPGi + ciP2
Gi (6)

Where ai, bi, and ci are the cost coefficients of the thermal
generator, PGi real power generation, and NGT is the number
of thermal generators.

B. Constraints
1) Equality Constraints
The typical load flow represents the equality constraints [18]:

PGi −PLi =Vi

NB

∑
j=1

Vj(Gi j cosθi j +Bi j sinθi j) (7)

QGi −QLi =Vi

NB

∑
j=1

Vj(Gi j sinθi j −Bi j cosθi j) (8)

Where PLi,QLi are active and reactive load power of bus
i,Gi j,Bi j are conductance and susceptance of line i j, NB the
number of buses.

2) Inequality Constraints
• Based on control variables limits

Pmin
Gi ≤ PGi ≤ Pmax

Gi , i = 1,2, . . . ,NG (9)

V min
Gi ≤ VGi ≤V max

Gi , i = 1,2, . . . ,NG (10)

T min
i ≤ Ti ≤ T max

i , i = 1,2, . . . ,NT (11)

Qmin
Ci ≤ QCi ≤ Qmax

Ci , i = 1,2, . . . ,NC (12)

• Based on state variables limits

V min
Li ≤ VLi ≤V max

Li , i = 1,2, . . . ,NL (13)

Qmin
Gi ≤ QGi ≤ Qmax

Gi , i = 1,2, . . . ,NG (14)

Pmin
Gs ≤ PGs ≤ Pmax

Gs (15)

Where Ti,QCi,PGs are transformer tap setting, injected
reactive power by capacitor banks, and generator power
of slack power respectively. NG,NT , and NC are the
number of generators, the number of tap-changing trans-
formers, and number of compensators, respectively.
min and max refer to the lower and upper limits. s
refer to the slack bus.

III. PARTICLE SWARM OPTIMIZATION PSO
The PSO is stimulated by bird flocking or fish schooling
when searching for food; each particle represents a candidate
solution, and these particles, with a random velocity, fly over
the search space, each particle modifies its position based on
its own experiences as well as those of its nearby particles [19].
The best position is called the individual best position, while
the global best position is the best value over all particles.
Tow characteristics each particle has, a velocity and a position
based on objective function each particle remembers the best
position if this discovered path is well for the food source, so
other particles will get this information to get a better position.
Equations (16) and (17) explained the velocity updating and
the position updating [20]:

V t+1
id =V t

id ×W +C1 ×R1 ×
(
Pt

bestid −X t
id
)
+C2 ×R2

×
(
gt

bestid −X t
id
) (16)

xt+1
id = xt

id +V t+1
id (17)

Where V t+1
id ,V t

id ,x
t+1
id , and xt

id are the updated and current
velocity; and the updated and current position of the particle,
respectively. W is inertia weight; C1,C2 are positive constants
R1,R2 are random numbers between [0,1]. The PSO algorithm
can be described as following steps:

• Step 1: Initialize the position of the swarm (x0
id).

• Step 2: Initial Velocity (V 0
id).

• Step 3: Find the initial best local position (P0
bestid).

• Step 4: Find the global best position (g0
bestid).

• Step 5: Updating the iteration (t = t +1).

• Step 6: Updating the velocity (V t
id).

• Step 7: Updating the position (xt
id).

• Step 8: Individual best position updating (Pt
bestid).

• Step 9: Updating the global best position (gt
bestid).

• Step 10: Stopping criteria when reaching the maximum
number of iterations.

Fig. 1 explains the flow chart of the algorithm.
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Fig. 1. The flow chart of PSO.

IV. THE WT AND TCSC MODELING

A. The WT Modeling

Simulating the wind speed of any location gives a crucial
feature in the expected output power of a wind farm, and
this is useful for many applications such as the operation
and control of power systems or economic dispatch even unit
commitment. The wind speed in nature is variable, so it can
be estimated by its probability, the Weibull PDF is used in

this article:

f (v) =
(

k
c

)(v
c

)k−1
exp

[
−
(v

c

)k
]

(18)

Where f (v) is the probability of wind speed, v is the wind
speed, k is the shape parameter and c is the scale parameter.
Due to its adaptability and ability to characterize the distribu-
tion of wind speeds, the Weibull PDF is commonly used in
wind speed applications. The common feature of such PDFs
that leads to parameter variation and the possibility of error is
data error. This error can impact the parameter estimation of
the Weibull PDF and thus affect the distribution of probability,
which leads to deflection in the application. The power curve
of WT in Fig. 2, explains the relationship between the output
electrical power and wind speed, by the power curve provided
by the manufacturer, the output power of a WT for a specific
speed is calculated with 19.

Pw (v) =


0, f or v < vin and v > vout

Pwr

(
v−vin
vr−vin

)
, f or vin ≤ v ≤ vr

Pwr, f or vr < v ≤ vout

(19)

Where Pw is generated power, Pwr is the rated power of the
WT , vin is the cut-in speed, vr is the rated wind speed, and
vout is the cut-out speed.

This model of WT is simple and suitable for OPF and
power flow analysis applications. This model focuses on the
output power concerning the wind speed; the bus that consists
of the WT takes the form of a PV bus (voltage control bus);
the voltage of WT takes as a control variable; and the power
of the WT can be calculated by (19). The parameter of wind
speeds of WT is identified using the power curve of WT; when
the wind speed is less than the cut-in speed, the output power
will be zero; when the wind speed is between the cut-in and
rated speeds, the output power can be calculated using the
second term of (19); and if the wind speed is higher than the
rated power, the output power will be the rated power of WT.

B. Modeling of TCSC
TCSC consists of a thyristor-controlled reactor TCR and is
paralleled with a fixed capacitor bank, as shown in Fig. 3a.
When the firing angle of the thyristor changes the total re-
actance of TCSC, it can work in two modes. The first one
is capacitor reactance, as shown in Fig. 3b; the second one
is inductance reactance, as shown in Fig. 3c. In this article
taking the reactance of TCSC as a control variable [1, 13].

Xmin
TCSC ≤ XTCSC ≤ Xmax

TCSC (20)
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Fig. 2. The power curve of WT.

(a)

(b)

(c)

Fig. 3. TCSC diagram and modes: (a) The diagram of TCSC,
(b) The inductance mode of TCSC, (c) The capacitance mode
of TCSC.

V. SIMULATION RESULTS

Three Objective Functions (OF); active power losses (MW),
voltage deviation (p.u.), and generation fuel cost ($/h) have
been used to apply the OPF with the IEEE 30 bus system
that is shown in Fig 4. This system has 24 control variables
(5 generators active power, 6 generator magnitude voltage, 4
transformer tapping and 9 shunt injection capacitance).

TABLE I.
THE LOWER AND UPPER LIMITS OF GENERATORS

Control var. Lower limits MW Upper limits MW
P2 20 80
P5 15 50
P8 10 35
P11 10 30
P13 12 40

Fig. 4. IEEE 30 bus system with WT at bus 5 and bus 11.

The lower limits and upper limits of generators are shown
in Table I, the limits of generator voltage are (0.95, 1.1) p.u.
for all generators, the limits of transformer settings are (0.90,
1.1) p.u. for all transformers, and the limits of injected reactive
power by capacitor banks are (0, 5) MW for all capacitor
banks. The proposed algorithm used the Wind Turbine bus
magnitude voltage and TCSC reactance as control variables.
The software that used to execute this approach is MATLAB
2019a.

The PSO parameters used in this article are as follows: the
maximum number of iterations is 100 iterations, the number
of particles is 100 particles, and the inertia weight W range
is (0.4, 0.9), C1,C2 = 2. Table II shows the results of OPF
without WT and TCSC.
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TABLE II.
THE OPTIMAL SETTING FOR THE CONTROL VARIABLE

Control var. Base case OF losses OF VD OF Cost
P2 80 80 80 49.211
P5 50 50 50 21.35
P8 20 35 10 21.66
P11 20 30 29.9 10
P13 20 40 40 12
V1 1.05 1.100 1.015 1.100
V2 1.04 1.100 1.016 1.038
V5 1.01 1.082 1.067 1.064
V8 1.01 1.089 1.007 1.100
V11 1.05 1.100 1.009 1.100
V13 1.05 1.100 1.000 1.100
T11 1.078 0.986 1.019 1.100
T12 1.069 1.100 0.900 1.100
T15 1.032 1.100 0.961 1.099
T36 1.068 1.015 0.966 1.100

QC10 0 5 4.33 5
QC12 0 5 2.64 0
QC15 0 5 5 0
QC17 0 5 3.27 5
QC20 0 3.971 4.7 0.337
QC21 0 5 5 5
QC23 0 5 0 5
QC24 0 5 5 5
QC29 0 5 5 5

Total losses 5.842 2.973 5.274 9.077
VD 1.1567 1.451 0.1237 0.724

Gen. cost 901.94 967.41 944.51 800.44

Three cases have been used in this article, as follows:

A. Case 1: OPF With TCSC Based on PSO Technique
The TCSC is installed at the line (9-11) by trial and error. The
adjustment range of the TCSC reactance is from -0.7 to 0.3
from the line reactance. The reactance of the line (9-11) is
0.2 p.u., so the range of TCSC reactance XTCSC is (-0.14 p.u.,
0.06 p.u.). The results of this case are shown in Table III.
The results show the base case control variable of the IEEE
30 bus system and optimal control variables of the minimum
objective function (total active power losses, voltage deviation,
and generation cost) based on the PSO algorithm.

The results show the total active power losses, voltage
deviation, and generation cost are reduced compared with
the base case results. Therefore, it can be concluded that
the addition of TCSC and applied PSO improves the power
system’s performance. Fig. 5 explains the convergence of
an algorithm for those three objective functions after 100
iterations.

(a)

(b)

(c)

Fig. 5. For case 1: (a) Total active power losses objective
function, (b) Voltage deviation objective function, (c)
Generation cost objective function.
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TABLE III.
THE OPTIMAL SETTING OF CONTROL VARIABLES FOR
CASE 1.

Control var. Base case OF losses OF VD OF Cost
P2 80 80 20 48.69
P5 50 50 50 21.32
P8 20 35 10.04 21.19

P11 20 30 18.47 11.74
P13 20 40 40 12
V1 1.05 1.100 1.024 1.100
V2 1.04 1.100 1.003 1.035
V5 1.01 1.089 1.014 1.061
V8 1.01 1.100 1.008 1.100
V11 1.05 1.099 1.100 1.100
V13 1.05 1.100 0.995 1.100
T11 1.078 0.960 1.073 1.069
T12 1.069 1.100 0.900 0.900
T15 1.032 1.021 0.963 1.016
T36 1.068 1.015 0.972 0.983

QC10 0 5 3.317 5
QC12 0 5 5 5
QC15 0 5 4.663 5
QC17 0 5 0 5
QC20 0 5 5 5
QC21 0 4.989 3.585 5
QC23 0 5 5 5
QC24 0 5 5 5
QC29 0 4.985 3.120 5

XTCSC NA 0.04 0.06 0.06
Total losses 5.842 2.967 7.375 8.683

VD 1.1567 1.783 0.111 1.646
Gen. cost 901.94 967.39 897.19 799.29

B. Case 2: OPF With Wind Turbine WT Only Based on
PSO Technique

Two wind farms were installed in the system instead of the
generators at buses 5 and 11. The data shown in Table IV of
WT and the Weibull PDF of wind speed is from the reference
[8]. Each WT has a rated power of 3 MW, so the bus 5 wind
farm rated power is 75 MW and the bus 11 wind farm rated
power is 60 MW. Weibull PDFs for buses 5 and 11 are shown
in Fig. 6.

TABLE IV.
WT AND PDF PARAMETERS OF THE WIND FARM

Wind farm
No. of

turbines WT speed
PDF

parameters

Bus 5 25 vin = 3m/s
vr = 16m/s

vout = 25m/s

c = 9
k = 2

Bus 11 20
c = 10
k = 2

(a)

(b)

Fig. 6. (a) Weibull PDF for bus 5, (b) Weibull PDF for bus 11.

1) Case 2.1
In this case, the wind farm works with full generation rated
power, which means the wind speed is high at rated speed,
so that the generation of bus 5 is 75 MW and for bus 11 is
60 MW. Table V shows the results of the optimal setting for
the control variables and the value of each O.F of real power
losses (MW), voltage deviation (p.u.), and generation cost
($/h).

From the values of the optimized objective function, can
observe the enhanced results; the convergence for each objec-
tive function based on the PSO technique is clear, as shown
in Fig. 7. In this case, the power of WT has been used at
its rated value according to the rated wind speed. The rated
power at bus 5 is 75 MW, and the rated power at bus 11 is
60 MW. This case simulates if a high wind speed occurs, like
in a storm situation. This case aims to explain how the PSO
algorithm can manage the system under the condition that the
generation of the system is redundant compared with the total
load of the system.
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TABLE V.
THE OPTIMAL SETTING OF CONTROL VARIABLES FOR
CASE 2.1.

Control var. Base case OF losses OF VD OF Cost
P2 80 20 20.78 28.46
P8 20 35 10 10
P13 20 40 12.54 12
V1 1.05 1.100 1.027 1.100
V2 1.04 1.097 1.058 1.095
V5 1.01 1.093 0.950 1.079
V8 1.01 1.100 01.003 1.087
V11 1.05 1.100 1.099 1.100
V13 1.05 1.100 0.969 1.100
T11 1.078 0.966 1.100 0.984
T12 1.069 1.100 0.900 1.100
T15 1.032 1.025 0.945 1.098
T36 1.068 1.001 0.972 0.999

QC10 0 1.372 0 0
QC12 0 0.166 4.656 5
QC15 0 5 5 5
QC17 0 5 0 2.165
QC20 0 5 5 5
QC21 0 5 5 0
QC23 0 5 4.99 0
QC24 0 5 5 5
QC29 0 5 5 0

Total losses 5.842 1.845 4.424 3.427
VD 1.1567 1.757 0.11 1.15

Gen. cost 901.94 447.95 382.78 378.24

The results show how the PSO reschedules the generation
of the system generators according to this situation. From
the Weibull PDF for bus 5 and bus 11, as shown in Fig 6,
the probability of this situation is low, so the next subcase
will show the wind speed has a probability higher than this
subcase to show the ability of the algorithm.

(a)

(b)

(c)

Fig. 7. For case 2.1 (a) total active power losses objective
function (b) voltage deviation objective function (c)
generation cost objective function.

2) Case 2.2

The same data from the previous subcase of WT has been
used in this case, but the difference here is that the generation
power of the WT is not at rated power; it is taken according
to the probability of wind speed. The mean wind speed of
bus 5 is 7.976 m/s and 8.862 m/s for bus 11, according to 19,
the power produced by bus 5 is 28.71 MW and 27.1 MW by
bus 11. The results of this subcase are presented in Table VI,
which explains the optimal control variables based on the PSO
algorithm of each objective function of losses (MW), voltage
deviation (p.u.), and fuel cost ($/h). Also, this table shows the
base case of OPF. Fig. 8 shows the convergence for each of
these three objective functions based on the PSO algorithm.
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TABLE VI.
THE OPTIMAL SETTING OF CONTROL VARIABLES FOR
CASE 2.2.

Control var. Base case OF losses OF VD OF Cost
P2 80 80 80 45.45
P8 20 35 35 13.38
P13 20 40 12.39 12
V1 1.05 1.100 1.019 1.100
V2 1.04 1.096 1.011 1.035
V5 1.01 1.073 1.025 1.066
V8 1.01 1.083 0.993 1.080
V11 1.05 1.100 0.998 1.100
V13 1.05 1.100 1.076 1.099
T11 1.078 0.947 0.994 1.100
T12 1.069 1.100 0.918 0.900
T15 1.032 1.046 1.100 1.031
T36 1.068 0.985 0.935 0.991

QC10 0 5 3.28 5
QC12 0 5 0 5
QC15 0 5 5 4.9
QC17 0 5 0.242 5
QC20 0 5 4.953 5
QC21 0 5 5 0
QC23 0 5 5 5
QC24 0 5 3.832 5
QC29 0 3.858 0 5
losses 5.842 4.213 6.638 7.580
VD 1.1567 1.683 0.128 1.514

Gen. cost 901.94 7.117 673.49 630.25

The results of optimization are less than case 2.1 because
the generation is reduced and for the same base load of the
system, but the results are still less than the base case of
the system. These two subcases show the ingenuity of the
algorithm to manage the system under different conditions.

(a)

(b)

(c)

Fig. 8. For case 2.2 (a) total active power losses objective
function (b) voltage deviation objective function (c)
generation cost objective function.

C. Case 3: OPF with WT and TCSC Based on PSO Tech-
nique

In this case, the WT with its two subcases in (2.1 and 2.2)
and TCSC reactance have been used together as a control
variable in OPF for the same three O.F objective functions;
losses (MW), voltage deviation (p.u.), and fuel cost ($/h).
Integrating TCSC with WT provides flexibility in improving
the OPF of the system as shown in the following two subcases.

1) Case 3.1
In this case, the same TCSC reactance range in the same loca-
tion in case 1 and the same condition of WT rated generation
power in case 2.1 have been used in this subcase. As observed
from the following results in Table VII, the TCSC gives more
flexibility to innovative management of the system by PSO
algorithm when compared with the results of subcase 2.1. Fig.
9 shows the convergence for each objective function based on
the PSO algorithm.
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(a)

(b)

(c)

Fig. 9. For case 3.1 (a) total active power losses objective
function (b) voltage deviation objective function (c)
generation cost objective function.

The incorporation of TCSC with the WT and applying the
PSO as observed from Table VII and compared with the results
in 2.1, the optimization of the O.F in this case is considered
much better.

TABLE VII.
THE OPTIMAL SETTING OF CONTROL VARIABLES FOR
CASE 3.1.

Control var. Base case OF losses OF VD OF Cost
P2 80 25.02 20 30.727
P8 20 35 20.33 10

P13 20 40 40 12
V1 1.05 1.100 1.005 1.100
V2 1.04 1.100 0.993 1.089
V5 1.01 1.093 1.085 1.073
V8 1.01 1.100 0.95 1.070
V11 1.05 1.100 1.100 1.100
V13 1.05 1.100 1.049 1.100
T11 1.078 1.100 1.087 0.933
T12 1.069 0.900 0.900 1.100
T15 1.032 0.988 1.039 1.031
T36 1.068 0.988 0.949 1.005

QC10 0 5 4.973 5
QC12 0 0 5 0
QC15 0 3.909 0.178 5
QC17 0 5 0.294 5
QC20 0 5 5 3.338
QC21 0 3.552 5 4.876
QC23 0 5 5 5
QC24 0 5 5 5
QC29 0 5 2.427 5

XTCSC NA 0.14 0.04 0.06
losses 5.842 1.739 3.347 3.287
VD 1.1567 2.15 0.110 1.45
cost 901.94 448.69 413.61 377.92

2) Case 3.2
This case is the same as the previous case but in this case,
the generation of wind turbines is subject to wind speed as
in subcase 2.2. By comparing the results of this case with
the subcase of 2.2, the result will be improved since adding
a TCSC gives more flexibility to control the system, and this
is what can be observed in Table VIII. Fig. 10 shows the
convergence for each objective function based on the PSO
algorithm.

Table IX compares between case 3 in that the WT with
the TCSC is better than in case 2 (without TCSC) because the
TCSC improved the system performance by controlling the
inductance of the line.
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TABLE VIII.
THE OPTIMAL SETTING OF CONTROL VARIABLES FOR
CASE 3.2.

Control var. Base case OF losses OF VD OF Cost
P2 80 80 70.6 45.52
P8 20 35 26.53 13.77
P13 20 40 40 12
V1 1.05 1.100 1.034 1.100
V2 1.04 1.100 0.993 1.037
V5 1.01 1.075 1.079 1.063
V8 1.01 1.089 0.950 1.100
V11 1.05 1.100 1.094 1.100
V13 1.05 1.100 1.002 1.100
T11 1.078 1.094 1.086 0.965
T12 1.069 0.914 0.900 1.100
T15 1.032 1.023 0.979 1.100
T36 1.068 0.984 0.961 1.007

QC10 0 5 5 0
QC12 0 5 4.686 5
QC15 0 3.255 5 5
QC17 0 4.459 1.721 5
QC20 0 5 5 5
QC21 0 5 4.979 5
QC23 0 5 5 3.43
QC24 0 5 5 5
QC29 0 5 4.704 5

XTCSC NA 0.06 0.059 0.06
losses 5.842 4.206 6.259 7.573
VD 1.1567 1.781 0.114 1.196

Gen. cost 901.94 712.88 673.29 630.33

(a)

(b)

(c)

Fig. 10. For case 3.1 (a) total active power losses objective
function (b) voltage deviation objective function (c)
generation cost objective function.

TABLE IX.
COMPARED BETWEEN CASE 2 AND CASE 3.

Case 2.1 Case 3.1
OF

losses

OF

VD

OF

Cost

OF

losses

OF

VD

OF

Cost
Total power losses (MW) 1.845 4.424 3.427 1.739 3.347 3.287

VD 1.757 0.11 1.15 2.15 0.110 1.45
Gen. cost ($/h) 447.95 382.78 378.24 448.69 413.61 377.92

Case 2.2 Case 3.2
Total power losses (MW) 4.213 6.638 7.580 4.206 6.259 7.573

VD 1.683 0.128 1.514 1.781 0.114 1.196
Gen. cost ($/h) 7.117 673.49 630.25 712.88 673.29 630.33

VI. CONCLUSION

In this article, the OPF has been presented with the WT and
TCSC device based on the PSO algorithm to minimize the
objective function of losses (MW), voltage deviation (p.u.),
and fuel cost ($/h). The proposed approach was tested on
the IEEE 30 bus system, MATLAB 2019a with the m-file
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script used to execute the algorithm. The results showed
the algorithm’s ability to improve and manage the network,
its generation, and the power flow. The results also showed
that adding a TCSC gives additional flexibility to control
the network. Despite the challenges posed by WT with the
power system, the OPF using the PSO algorithm leads to
better management of power flow over the system, also the
TCSC gives additional features to manage and control the
power flow, as shown in the results of this article, the results
of case 3 compared with results of case 2 that show the effect
of adding the TCSC with WT, the TCSC gives an available
to control for the line impedance that allows to manage the
power flow in the line. The limitations of this approach are the
time consumed by the algorithm and the data on wind speed.
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