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Abstract
Aircraft detection is a vital and significant field within object detection that has garnered considerable attention from
academics, particularly following the advancement of deep learning methods. Aircraft detection has recently become
widely utilized in several civil and military fields. This comprehensive survey meticulously categorizes and evaluates
diverse deep learning methodologies in airplane detection research. Encompassing radar-based, image-based, and
multimodal approaches, the paper presents a structured framework to enhance understanding of the evolving research
landscape within this domain. The survey critically identifies gaps and discerns emerging trends, offering valuable
insights into standard datasets of aircraft images, performance metrics, real-world applications, and challenges and
limitations encountered by aircraft detection systems. Its potential contributions are underscored as pivotal for advancing
the safety and security of air travel. This research paper is the inaugural publication of its kind in the domain of aircraft
detection review papers, establishing itself as an all-encompassing reference for subsequent scholars.
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I. INTRODUCTION

Object detection stands as a main stone in the domains of
computer vision, deep learning, and artificial intelligence,
playing a pivotal role in advanced tasks like target tracking,
event detection, behavior analysis, and semantic scene under-
standing. The primary aim of object detection is to precisely
identify object targets within an image, accurately classify
their categories, and provide bounding box coordinates for
each detected target [1]. This capability holds significant im-
portance in both scientific research and practical industrial
applications, finding use in diverse fields such as face de-
tection, text detection, pedestrian detection, video analysis,
medical image analysis, and the detection of vehicles like cars,
ships, and aircraft [2, 3].

Detecting aircraft poses unique challenges that set it apart
from general object detection. These challenges, for example,

in remote sensing images, encompass factors like variations
in scale, complex backgrounds, and diverse shapes [4], ne-
cessitating specialized algorithms to discern specific features
associated with aircraft. This specialization makes aircraft
detection a distinct subset within the broader field of object
detection. Furthermore, the complexities in aircraft detection
extend to considerations of movement, the analysis of Syn-
thetic Aperture Radar (SAR) images, and challenges related
to autonomous navigation. Addressing these complexities
requires focused attention and customized approaches to ac-
commodate dynamic flight patterns, diverse environmental
conditions captured in SAR imagery, and the intricacies asso-
ciated with the autonomous behavior of aircraft in different
operational scenarios.

The focal point of the paper includes the following key
contributions:
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1. This review paper undertakes a comprehensive explo-
ration of deep learning approaches specifically designed
for aircraft detection.

2. Highlighting ongoing research efforts that leverage radar
technology, computer vision, and multimodal sensing.
Emphasizing the goal of developing detection systems
capable of handling the intricacies associated with air-
craft detection.

3. In essence, this survey paper serves as a valuable re-
source for comprehensively reviewing state-of-the-art
methodologies in airplane detection, offering insights
into the challenges faced and the advancements made
in addressing them.

4. Discusses the integral role of airplane detection in do-
mains like air traffic control, military surveillance, and
aerial reconnaissance. Recognizes its importance in
addressing the growing demands on airspace utilization
and heightened security concerns.

II. BACKGROUND

Aircraft detection stands as a critical aspect in various do-
mains, including air traffic control, military surveillance, and
aerial reconnaissance, given the escalating demands on airspace
utilization and heightened security concerns [5,6]. Researchers
are making efforts to develop and explore innovative ap-
proaches to enhance detection systems, addressing the com-
plexities inherent in identifying aircraft. As airspace utiliza-
tion demands grow and security concerns heighten, the ef-
fective detection of airplanes becomes increasingly crucial,
driving advancements and ongoing research in the field.

After a comprehensive investigation, it was discovered
that there is only one existing review paper [7] specifically
addressing aircraft detection. Consequently, the inclusion of
prior works related to review papers on aircraft detection in
this review is not feasible. As a result, our focus shifts to
presenting relevant research on object detection as a broader
field, which has been extensively covered by scholars in re-
cent years. Despite this limitation, Table I in this review
encapsulates related work conducted within the past three
years and the current year, offering a glimpse into the latest
developments in the object detection field.

Many researchers have made substantial contributions to
object detection in recent years, focusing on using cutting-
edge deep learning algorithms, as Table I illustrates. The
prevailing trend in contemporary surveys on object detection
revolves around highlighting advancements in the broader
domain of object detection facilitated by deep learning.

To accomplish this objective, these surveys establish a
systematic framework of categories for object detection tech-

niques. They meticulously examine fundamental techniques
that have exerted significant influence, providing a compre-
hensive landscape overview. Moreover, these surveys delve
into discussions on widely used datasets and evaluation mea-
sures, thereby contributing to a thorough understanding of the
subject [8].

III. THE GENERAL ARCHITECTURE OF
OBJECT DETECTION

Aircraft detection, a specialized form of object detection, is
dedicated to identifying and locating aircraft within an image.
The primary goal is pinpointing all instances of predefined
categories in the image by employing axis-aligned boxes. The
detector is tasked with accurately detecting and classifying
all occurrences of object classes and precisely outlining a
bounding box around each instance. Recent object detection
models rely on massive datasets comprising labeled images
for training and evaluation. These models are systematically
assessed on established benchmarks, employing sophisticated
deep learning techniques to enhance their performance [9].

After a comprehensive review of various studies within
the field of aircraft detection employing deep learning, as in-
dicated by [10–14] a clear pattern emerges regarding the fun-
damental architecture of the aircraft detection model, which
comprises five pivotal stages. The process initiates with the
compilation of a dataset containing images specifically fo-
cused on aircraft. Subsequently, the stages involve data pre-
processing, feature extraction, the implementation of an adept
deep learning detector, and the subsequent evaluation of the
detection outcomes.

An aircraft dataset is a systematically organized collection
of images with a specific focus on aircraft, curated for diverse
applications within the realms of computer vision and ma-
chine learning. These datasets play a pivotal role as valuable
assets for training, testing, and validating algorithms and mod-
els engineered to analyze and interpret visual data. Covering
an array of categories and conditions relevant to the targeted
application or research field, these datasets contribute signif-
icantly to the development and evaluation of robust models.
The quality and quantity of the dataset hold substantial influ-
ence over the efficacy of detection models. Furthermore, these
datasets are essential for assessing and verifying the accuracy
of proposed methodologies [15]. Establishing a solid founda-
tion for training and evaluation, standard datasets such as the
Dataset of Object Detection in Aerial Images (DOTA) [16] and
Remote Sensing Object Detection (RSOD) [17], are widely
employed in this domain.

Preprocessing plays a crucial role in preparing aircraft
images for subsequent stages [18]. The raw images in the
dataset cannot be directly processed by the detection system,
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necessitating essential adjustments to image dimensions and
improvements to clarity by refining aspects like brightness,

color, and contrast. Data augmentation, a vital component,
involves operations such as rotation, scaling, cropping, and
noise deletion to meet specific requirements [24]. This phase
ensures that the input data undergoes appropriate transforma-
tions, enriching it to optimize the performance of subsequent
stages in the image processing pipeline.

In the feature extraction phase, deep learning filtering
is employed to extract and filter out irrelevant features [25,
26]. These features are then fed into the detection phase to
accurately identify airplanes.

The detection phase consists of two integral tasks: local-
ization and classification [9]. In the localization task, the
objective is to precisely determine the aircraft’s position by
defining a bounding box around it. Concurrently, the classifi-
cation task focuses on categorizing the detected object, specif-
ically identifying it as an aircraft [12]. To enhance the accu-
racy and efficiency of aircraft detection, recent advancements
have embraced sophisticated deep-learning detectors such as
Region-based Convolutional Neural Networks (RCNN) and
You Only Look Once (YOLO) [27]. These cutting-edge mod-
els contribute to achieving both precision and speed in the
detection process. The ultimate outcome of this phase in-
volves encapsulating the identified aircraft within a bounding
box within the image, definitively confirming its classification
as an aircraft [28].

The final stage involves evaluating the system’s perfor-
mance by assessing the obtained results using different evalua-
tion metrics such as accuracy, mean Average Precision (mAP),
and F1-score. Fig. 1 Illustrate the general framework of object
detection as well as aircraft detection .

IV. TAXONOMY OF DETECTION APPROACHES

The taxonomy of approaches in aircraft detection encapsulates
a comprehensive categorization of methodologies employed
in identifying and localizing aircraft. This classification is
essential for understanding the diverse strategies and technolo-
gies utilized in the field. The taxonomy typically comprises
three main categories: sensor-based detection, featuring tech-
niques reliant on specific sensor modalities such as radar,
LIDAR, and infrared; image-based detection, which focuses
on leveraging visual information through optical and satellite
imagery; and multi-sensor fusion, integrating data from mul-
tiple sources for enhanced accuracy and robustness. Within
each category, specific techniques may include deep learning-
based methods, traditional machine learning algorithms, and
hybrid models.

Fig. 1. General Framework of Object Detection

A. Sensor-based Detection
Sensor-based taxonomy plays a pivotal role in categorizing
aircraft detection methodologies based on the type of sensors
utilized, contributing to a nuanced understanding of detec-
tion approaches. This taxonomy encompasses various sen-
sor modalities, each offering distinct advantages and chal-
lenges [29]. The primary categories within the sensor-based
taxonomy include Radar-Based Detection, Lidar-Based De-
tection, and Infrared-Based Detection [30].
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TABLE I.
SUMMARY OF RELATED SURVEYS ON OBJECT DETECTION IN THE LAST FOUR YEARS

References Survey Title Year Advantage Disadvantage
[9] A Survey of Modern Deep

Learning based Object De-
tection Models

2021 This survey examines the lat-
est progress in object detec-
tors that utilize deep learning
techniques

This research omitted crucial
aspects of object detection,
including: Lightweight de-
tectors, 3D object detection,
and object detection in video

[19] Deep Learning for Object
Detection: A Survey

2021 This article investigated the
latest progress in object de-
tection and provided a con-
cise introduction to the liter-
ature studies

This survey does not include
a thorough analysis of object
detection in video or the de-
tection of small objects

[20] Deep Learning-Based Object
Detection Techniques for Re-
mote Sensing Images: A Sur-
vey

2022 This paper examined the lat-
est developments in remote
sensing object detection sys-
tems, encompassing both tra-
ditional and deep learning
methodologies

This research needs to ad-
dress many problems related
to remote sensing object de-
tection, such as: improve
weakly supervised learning,
improve small object issues

[21] Object Detection in 20 Years:
A Survey

2023 This study provided a com-
prehensive analysis of the
rapidly evolving research
field, taking into account
technological advancements
over twenty-five years (from
the 1990s to 2022)

This study does not include
a thorough analysis of many
aspects such as: object detec-
tion in video or the detection
of small objects

[22] A Comprehensive Review of
Object Detection with Deep
Learning

2023 In this review, object detec-
tion and its different aspects
have been covered in detail,
such as: object detection
framework, object detection
problems and applications

This review does not include
a thorough analysis of many
aspects such as: object detec-
tion in video or the detection
of small objects

[23] Remote Sensing Object De-
tection in the Deep Learning
Era—A Review

2024 This study presents an
overview of the advance-
ments in object detection
methods and their closely
related technique, instance
segmentation, in the era of
deep learning. Its purpose
is to give researchers up-to-
date information on these
topics

This research does not suffi-
ciently address the problems
and challenges that influence
remote sensing object detec-
tion

1) Radar-based Detection

Radar-based detection is a pivotal component in the realm
of aircraft detection, offering a robust and versatile approach
to identifying and tracking airborne objects. This technique
relies on the use of radar systems, leveraging radio frequency
signals to detect the presence, location, and motion character-
istics of aircraft. Radar-based detection is particularly advanta-

geous due to its capability to operate in various environmental
conditions, including adverse weather and low visibility sce-
narios [30, 31].

The fundamental principle involves emitting radio waves,
which, upon encountering an aircraft, undergo reflection and
are subsequently detected by the radar receiver. The result-
ing signals are then processed to extract relevant informa-
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tion such as the aircraft’s range, speed, and heading [30, 31].
Radar-based detection systems have demonstrated effective-
ness in both military and civilian applications, contributing
significantly to air traffic control, surveillance, and defense
mechanisms [32, 33]. While radar-based approaches have
long been established, ongoing research aims to enhance their
capabilities through integration with advanced technologies
such as deep learning, thereby further improving accuracy and
adaptability in diverse operational contexts.

2) LIDAR-based Detection
LIDAR-based detection stands at the forefront of cutting-edge
technologies for aircraft detection, relying on Light Detection
and Ranging (Lidar) systems to capture detailed and accurate
information about the surrounding airspace [34]. LIDAR
operates by producing laser pulses and calculating the duration
it takes for the light that is reflected to come back, allowing
for the generation of detailed, three-dimensional maps of the
environment [30]. In aircraft detection, LIDAR is useful in
precisely detecting and characterizing aircraft.

The technology offers advantages such as fine spatial res-
olution, the ability to discern object shapes, and efficacy in
various lighting conditions. LIDAR-based detection finds ap-
plications in autonomous driving, aviation safety, autonomous
navigation, and environmental monitoring [20]. Current re-
search efforts are focused on improving LIDAR systems by
advancing sensor technology and data processing techniques.
This will lead to better accuracy and reliability in detecting
airplanes. The integration of LIDAR with complementary
technologies, including machine learning and deep learning,
further contributes to the evolution of robust and efficient
aircraft detection systems.

3) Infrared-Based Detection
Infrared-based detection exploits the thermal radiation emit-
ted by objects, including airplanes, to identify and locate
them. Infrared sensors detect the heat signatures of airplanes,
making this approach particularly advantageous in low-light
or nighttime conditions. Infrared-based detection is less af-
fected by visual obscurants like fog and can contribute to
24/7 surveillance capabilities. It is commonly employed in
conjunction with other sensor modalities for comprehensive
coverage [35, 36].

B. Image-based Detection
Image-based detection stands as a pivotal domain within air-
craft detection methodologies, leveraging visual data to iden-
tify and locate airborne objects [37]. In this approach, the
analysis is primarily rooted in the information extracted from
images, encompassing both optical and satellite imagery [38].

The image-based detection process involves the utilization
of computer vision techniques, pattern recognition, and deep

learning algorithms to discern aircraft from their surround-
ings [38]. These methods often rely on datasets comprising
aerial images captured under diverse conditions, contributing
to the training and evaluation of detection models. Image-
based detection is integral in various applications, including
surveillance, border control, and military operations [39, 40].

The advancements in high-resolution imaging technolo-
gies, coupled with sophisticated image processing algorithms,
continue to refine the precision and competence of aircraft
detection. Ongoing research in this field aims to address
challenges such as occlusion, scale variations, and diverse
environmental conditions, paving the way for increasingly ro-
bust image-based aircraft detection systems [4]. In this paper,
the focus will be on satellite images-based detection.

Satellite image-based detection is a pivotal category within
sensor-based approaches for aircraft detection, leveraging
Earth-observation satellites equipped with diverse sensors.
These satellites capture high-resolution imagery from space,
offering a comprehensive and expansive perspective for mon-
itoring and identifying aircraft activities [38]. The data col-
lected from satellite sensors, including Optical remote sensing
images (RSIs) and Synthetic Aperture Radar (SAR), con-
tributes to the precise detection, tracking, and analysis of
airplanes across varied geographical locations.

1) Optical Remote Sensing Images
Optical remote sensing images a prominent category within
sensor-based approaches for aircraft detection, relying on the
utilization of visual information captured by optical sensors,
such as cameras, to identify and locate airplanes. This method-
ology leverages the rich visual data inherent in optical images,
enabling detailed analysis of the aircraft’s appearance, shape,
and contextual information.

Optical image-based detection has witnessed significant
advancements with the integration of deep learning techniques,
particularly Convolutional Neural Networks (CNNs), for ro-
bust feature extraction and recognition Remote Sensing Im-
ages (RSIs) are an example of optical images that are produced
by capturing data about a target object by detecting reflected,
radiated, or scattered electromagnetic waves. This data are
collected by sensors deployed on remote platforms signifi-
cantly from the target object [41]. RSI can accurately depict
the shape, size, color, and other characteristics of the target
surface and can be used for feature observation and recogni-
tion. Since remote sensing images from satellite sensors are
taken from high altitudes and include atmospheric interfer-
ence, viewpoint fluctuation, background clutter, and lighting
variances, they are far more complex than computer vision
images.

Furthermore, compared to digital photographs produced
by cameras, satellite images cover wider regions (at least 10
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Fig. 2. RSI Image

km x10 km for one image frame) and reflect the complex
terrain of the Earth’s surface (various land types) with two-
dimensional images with less spatial resolution [10, 42]. Re-
mote sensing images exhibit diverse scales, directions, small
objects, and complicated backgrounds. However, they share
common object features with natural images, including low-
level semantic features like edges and colors, as well as ab-
straction of high-level semantic features [43]. Lately, de-
tecting aircraft in remote sensing data has gained significant
attention in many fields, including environmental monitoring,
military operations, and civil applications [25, 39]. See fig.
2 [44].

2) Synthetic Aperture Radar (SAR) Images
Comprehensive depiction of the Earth’s surface, obtained
using SAR, a specialized radar technology [45]. It possesses
the unique capability of being unaffected by atmospheric
conditions like as clouds and fog, enabling it to capture images
of the surface of the Earth continuously, regardless of the
time of day [46, 47]. Synthetic Aperture Radar (SAR) can
produce detailed high-resolution images regardless of the time
of day, weather conditions, or lighting circumstances. This
characteristic confers distinct advantages upon SAR compared
to alternative sensors like optical, infrared, and hyperspectral
sensors [48].

In recent years, Synthetic Aperture Radar (SAR) satel-
lites have increased, including Sentinel-1, TerraSAR-X, and
Chinese Gaofen-3. As a result, there has been a significant
increase in the availability of high-resolution SAR imagery
for the purpose of scientific research [49]. Synthetic aperture

Fig. 3. SAR image

radar (SAR) is a highly utilized technology across numerous
domains because it offers uninterrupted and consistent moni-
toring throughout both day and night. The rapid advancement
of synthetic aperture radar (SAR) technology has facilitated
the acquisition of a substantial amount of high-resolution data
from both spaceborne and airborne platforms. This influx
of data presents novel prospects for detecting targets using
SAR [50]. See fig. 3 [51].

The increasing resolution of acquired Synthetic Aperture
Radar (SAR) images has led to a growing adoption of aircraft
detection in advanced imagery analysis research. The detec-
tion of aircraft is a significant problem due to factors such
as the escalating amount of data, intricate backgrounds, and
the dispersed nature of aircraft image characteristics as detec-
tion targets [13, 50]. The efficacy of traditional SAR image
target detection techniques has seen certain advancements;
nonetheless, these methods necessitate prior information and
exhibit a need for more robustness. Moreover, the actual ap-
plicability of these algorithms is limited by their detection
timeframes [52, 53].

In recent years, the field of detecting aircrafts has wit-
nessed widespread use of advanced deep learning models due
to the rapid progress in deep learning technologies. Con-
volutional neural networks (CNNs) possess robust feature
extraction capabilities through their end-to-end architectures,
rendering them the prevailing deep learning methods for target
detection. Consequently, they present significant prospects
for detecting aircraft in synthetic aperture radar (SAR) im-
ages [50, 54]. See fig 4. More details about the topic at the
next section.
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Fig. 4. Taxonomy of Detection Approaches

V. DEEP LEARNING-BASED APPROACHES

Due to advancements in high-performance hardware, deep
learning has become extensively researched and implemented
in computer vision domains, including classification, seman-
tic segmentation, and, detection [55]. Deep neural networks
have the capability to extract highly abstract semantic informa-
tion, hence enhancing the representation capacity of features
and significantly improving the accuracy and speed of object
detection [43].

The convolutional neural network (CNN) is an essential ar-
chitecture in the field of deep learning due to its robust feature
description capabilities. It has achieved significant advance-
ments in various domains. CNN-based object detection ap-
proaches eliminate the requirement for human feature design.
Traditional detection methods are surpassed by their superior
detection accuracy and generalization capabilities [46].

Target detection techniques based on Convolutional Neu-
ral Networks (CNN) in general and aircraft in particular can
be classified into two distinct groups: One type of target de-
tection algorithm is region-based, which is used in two-stage
algorithms like Region-based Convolutional Neural Network
(R-CNN) and Fast Region-based Convolutional Neural Net-
work (Fast R-CNN). These algorithms exhibit a high level of

accuracy in their detecting capabilities, but their pace could
be faster. The second group consists of the regression-based
detection of targets technique, encompassing the one-stage
methods referred to as You Only Look Once (YOLO) and
SSD (Single Shot multi-box Detector). This method converts
the task of detection into a task of regression, resulting in a
substantial increase in speed [56].

A. Two-stage Approaches
A two-stage detector is a network that includes a distinct mod-
ule for generating region proposals. These approaches aim
to identify a variable number of item proposals in an image
within the initial stage and subsequently classify and locate
them in the second stage using category-specific classifiers
to determine the category labels of the proposals. Due to the
presence of two distinct stages, these systems typically re-
quire more time to create proposals, possess intricate designs,
and lack a global context [9, 57]. R-CNN, Faster R-CNN
and Spatial Pyramid Pooling in Deep Convolutional Network
(SPPNet) are the most famous examples of two-stage detec-
tors. Fig. 5 [58] illustrates the Inside design of two-stage
object detectors.

Recently many researchers have been proposed various
aircraft detection methods in context of two-stage deep learn-
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ing:
Chen et al. introduced an innovative framework for de-

tecting aircraft targets. They developed a region proposal
approach that utilized a circular intensity filter to accurately
identify probable aircraft targets at various scales in RSIs im-
ages. Furthermore, the researchers utilized the VLAD method
to encode the rotation-invariant Fourier HOG feature. This ap-
proach exhibits fewer dimensions and offers a more resilient
depiction of the target’s rotational movement. The optical
remote sensing images were acquired from the RSOD dataset,
consisting of 446 images capturing an overall of 4993 aircraft
objects. The images have dimensions of 1072 × 975 pixels
and 1116 × 659 pixels. The photos were sourced from Google
Earth and Tianditu, both of which offer spatial resolutions
ranging from 0.5 m to 2 m. The results showed that the pro-
posed method could quickly and accurately detect aircraft
targets in RSIs and achieve a better performance. The average
precision was 93.4%, and this was higher than the precision
values of other methods [44].

Qiangwei et al. developed an aircraft detection method
that utilizes corner clustering and Convolutional Neural Net-
work (CNN). The scheme consisted of two primary stages: re-
gion suggestion and classification. Initially, candidate regions
are produced by applying the mean-shift clustering technique
to the corners identified on binary pictures. Subsequently, the
Convolutional Neural Network (CNN) was employed to ex-
tract distinctive features and classify potential areas that may
contain the aircraft. The precise location of the aircraft was ul-
timately ascertained through subsequent scrutiny. The optical
remote sensing pictures utilized were sourced from the RSOD
dataset. The collection has 446 photos of aircraft, 4993 air-
craft in total. The image dimensions are 1072 × 975 pixels and
1116 × 659 pixels. The final model achieved a classification
accuracy (AC) of 98.29% after thorough testing [25].

Luo et al. introduced a novel eXplainable Artificial Intel-
ligence (XAI) framework for transparently analyzing Deep
Neural Networks (DNN) by employing airplane detection
as a specific example. The architecture consisted of three
components: Hybrid Global Attribution Mapping (HGAM)
for selecting the backbone network, PAth aggregation Net-
work (PANet), and Class-specific Confidence Scores Mapping
(CCSM) for visualizing the detector. The study utilized a
dataset consisting of 15 high-resolution SAR images captured
by the Gaofen-3 system. These images depicted several air-
ports and had a resolution of 1 meter. After SAR professionals
personally recognized and confirmed the aircraft, the SAR
images were separated into 512 × 512 pixel samples using
an automated process. The evaluation metrics were Precision
(P) = 91.63%, Recall (R) = 93.25%, mean Average Precision
(mAP) = 91.58% [13].

Zhang et al. proposed a novel approach to detect air-

planes in SAR images with a low Signal-to-Clutter-Noise
Ratio (SCNR). This strategy employed coherent scattering
enhancement and a fusion attention mechanism. In addition,
it enhanced the Faster R-CNN model by integrating a unique
pyramid network that includes features for both local and con-
textual attention. The contextual attention mechanism allows
the network to retrieve relevant contextual information from
the image, whereas the local attention mechanism selectively
highlights essential elements by boosting their distinctive qual-
ities. The network can detect aircraft by efficiently incorporat-
ing local and contextual attention. Much experimentation was
conducted using the Terra SAR-X SAR datasets to develop
benchmarks. The experimental results demonstrate that when
the SCNR is low, the proposed aircraft detection approach
achieved an average precision of 91.7% [59].

Khalaf et al. presented a method for detecting airplanes,
irrespective of their model, kind, or color variations. Ob-
ject detection can be accomplished by dividing the process
into three main stages: feature extraction, airplane detec-
tion, and evaluation of the detected airplane. A deep feature
extraction method utilizing the VGG model is employed to
extract the plane region. The aircraft was identified using
Support Vector Machines (SVM). The effectiveness of the
designed system is evaluated using two datasets: Caltech-101
and FGVC-Aircraft dataset. The results demonstrated a 99%
F1-score when using the Caltech-101 dataset and 98% when
using the FGVC-Aircraft dataset [60].

Table II summarizes the above-mentioned related works.

B. One-stage Approaches
A one-stage detector is a network that uses a single feed-
forward CNN to directly predict class probabilities and bound-
ing box offsets from whole images. These architectures do not
involve region proposal generation or post-classification/feature
resampling. All computation is encapsulated in a single net-
work [57]. It outperforms two-stage detectors in terms of
real-time performance and has a more streamlined architec-
ture [9]. You Only Look Once (YOLO) and SSD (Single
Shot multi-box Detector) are the most famous examples of
one-stage detectors. Fig. 5 [58] shows the inside design of
one-stage detectors.

Many researchers have recently suggested different air-
craft detection techniques in the framework of one-stage deep
learning:

Luo et al. introduced the Efficient Bidirectional Path
Aggregation Attention Network (EBPA2N). The EBPA2N
framework utilized YOLOv5s as the foundational network.
Subsequently, the Involution Enhanced Path Aggregation
(IEPA) module and the Effective Residual Shuffle Attention
(ERSA) module were introduced and seamlessly incorpo-
rated to enhance the precision of aircraft identification. Three
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TABLE II.
SUMMARY OF RELATED WORK OF TWO-STAGE AIRCRAFT DETECTORS

References Published
year

Dataset Image
type

Image size
(in pixels)

Deep learning
aircraft detector

Experimental
results

[13] 2021 Gaofen-3 SAR 512 × 512 XAI framework P= 91.63%
R = 93.25%
mAP = 91.58%

[25] 2020 RSOD RSI 1072 × 975
and 1116 ×
659

CNN A C = 98.29%

[44] 2022 RSOD RSI 1072 × 975
and 1116 ×
659

Fourier HOG Feature
and VLAD

AP = 93.4%

[59] 2023 Terra
SAR-X

SAR 256 × 256 Faster R-CNN AP = 91.7%

[60] 2024 Caltech-
101,
FGVC-
Aircraft
dataset

Real-
World
Images

300 × 200 VGG and SVM F1-score = 99%
F1-score = 98%

high-quality SAR images with a 1-meter resolution from the
Gaofen-3 system are used for independent testing. The images
represent three different airports: Hongqiao Airport (Airport
I) with dimensions of 12,000 × 14,400 pixels, Capital Air-
port (Airport II) with dimensions of 14,400 × 16,800 pixels,
and Military Airport (Airport III) with dimensions of 9,600 ×
9,600 pixels. The EBPA2N algorithm exhibited a detection
rate of 93.05% and a false alarm rate of 4.49%, surpassing the
performance of the current EfficientDet-D0 and YOLOv5s
networks. Additionally, it has the advantage of faster detection
speed [50].

Li et al. proposed a lightweight detection model (LDM)
that consists mainly of a reused block (RB) and an informa-
tion correction block (ICB) built upon the Yolov3 framework.
The RB module facilitated the neural network in extracting
comprehensive airplane characteristics by consolidating multi-
layer information. Although the RB module enhanced the ef-
fectiveness of the information, it also accumulated redundant
and irrelevant data through the reuse block, so compromising
the accuracy of detection. A sequence of tests was carried
out on the SAR aircraft detection dataset (SAR-ADD). The
Average precision (AP) established a superiority over the ac-
curacy values attained by other approaches, with a value of
69.54% [52].

Zhao et al. introduced a novel detection model called At-
tentional Feature Refinement and Alignment Network (AFRAN)
for accurately and efficiently detecting airplanes in SAR im-
ages. The method meticulously incorporates three key com-
ponents: The Attention Feature Fusion Module (AFFM), the

Deformable Lateral Connection Module (DLCM), and the
Anchor Guided Detection Module (ADM). These components
are designed to refine and align the informative properties of
aircraft. In order to evaluate the detection performance of
the system, a self-built dataset of sliced aircraft images and a
big scene SAR image was collected, as there was no publicly
available dataset for aircraft detection in SAR images. The
evaluation metrics were Precision = 90.4% Recall = 93.2% ,
F1 score= 91.8% [54].

Wang et al. presented a highly efficient remote sens-
ing aircraft object detection network based on the enhanced
YOLOv5n. This network integrates the Shufflenet v2 and
YOLOv5n models, substantially reducing network size with-
out compromising detection accuracy. The original CIoU and
convolution are replaced with EIoU and deformable convolu-
tion, which focuses on optimizing for the specific features of
small-scale aircraft objects. This substitution leads to faster
convergence and improved accuracy in regression. Further-
more, a coordinate attention (CA) mechanism is implemented
after the main structure to target orientation perception and po-
sitioning information specifically. The experimental findings
obtained from the Mar20 public dataset demonstrate that the
suggested network attained a mean average precision (mAP)
of 95.2% [61].

Chen et al. introduced the You Only Look Once-SAR
Aircraft Detector (YOLO-SAD), which utilizes the Attention-
Efficient Layer Aggregation Network-Head (A-ELAN-H) mod-
ule to prioritize crucial features for enhanced precision. The
SAR Aircraft Detection-Feature Pyramid Network (SAD-
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FPN) enhances the fusion of multi-scale features, resulting in
improved detection speed. Enhanced Non-Maximum Suppres-
sion (EH-NMS) effectively removes overlapping detections.
YOLO-SAD attained an average precision (AP) of 91.9% on
the SAR Aircraft Detection Dataset (SADD) [62].

Table III summarizes the above-mentioned related works
and fig. 6 shows the taxonomy of artificial intelligence and
deep learning.

VI. DATASETS FOR AIRCRAFT DETECTION

Datasets serve as pivotal components in the training and eval-
uation of aircraft detection models, contributing significantly
to the progression of aircraft detection research. Through-
out the evolution of aircraft detection, datasets have not only
provided a standardized benchmark for assessing and com-
paring algorithmic performance but have also propelled the
field towards addressing increasingly intricate and challenging
problems [57].

In recent years, a collection of datasets has been curated
explicitly for aircraft detection, encompassing the identifica-
tion of aircraft in RSI and SAR images. Noteworthy datasets
in this domain include DOTA and RSOD, among others. The
ensuing section delves into a more detailed elucidation of
some of the predominant datasets, shedding light on their
characteristics and contributions to advancing the capabilities
of aircraft detection algorithms.

A. Caltech-101
The Caltech-101 dataset [63] holds a prominent position in
the realm of computer vision, serving as a widely utilized
resource for object recognition and classification endeavors.
Developed by the California Institute of Technology, this
dataset encompasses a rich collection of approximately 9,146
images spanning 101 distinct object categories [26]. Each
category presents a variable number of images, ranging from
40 to 800, and the dataset is carefully crafted to introduce
challenges related to scale, viewpoint, and lighting conditions
[64]. The primary objective of Caltech-101 is to establish
a rigorous benchmark for evaluating the efficacy of object
recognition algorithms. The dataset includes 800 aircraft
images, and the uniform dimension of the images is set at 300
x 200 pixels. It adds consistency to the dataset, contributing
to its widespread adoption in the evaluation and advancement
of computer vision models. Fig. 7 shows some samples of
images for Caltech-101 dataset.

B. UC Merced Land (UCM)
The UCM dataset [65] comprises 21 distinct categories, with
each category containing a total of 100 images. The images
were hand-chosen from huge images acquired from the USGS

National Map Urban Area Imagery collection for different ur-
ban regions around the United States. The UC Merced dataset
consists of 2100 images in total, each with dimensions of 256
× 256 pixels containing three channels of a pixel resolution
of one foot [42, 66], It is noteworthy that the UCM dataset
includes a diverse range of spatial land-use patterns, which
adds complexity to the dataset. Furthermore, the presence of
highly overlapping classes, such as dense residential, medium
residential, and sparse residential, which primarily vary in
the density of structures, poses a challenge for classifying the
dataset. The collection is extensively utilized for the purpose
of aerial picture classification [67].

C. Unmanned aerial vehicle Car Detection and Aircraft
Object Detection (UCAS-AOD)

The UCAS-AOD dataset [68] is intricately designed for the
specific task of object detection in aerial images, with a partic-
ular emphasis on unmanned aerial vehicle (UAV) surveillance
contexts. The dataset captures images under diverse and chal-
lenging conditions, providing a nuanced representation of
scenarios crucial for training and evaluating object detection
algorithms. Notably, it encompasses instances of both cars
and aircraft, accompanied by annotations that facilitate the
nuanced development and assessment of detection models.
The primary aim of the UCAS-AOD dataset is to propel the
advancement of accurate and resilient object detection algo-
rithms, with a special focus on the complexities inherent in
UAV surveillance and aerial imagery.This dataset serves as a
valuable resource for researchers and practitioners, offering
the potential to augment the capabilities of object detection
systems in real-world applications. In addition, UCAS-AOD
specifically includes a subset of the aerial image dataset ob-
tained from Google Earth containing aircraft data, consisting
of 600 images that collectively feature 3210 occurrences of
aircraft, each with an image resolution of approximately 1000
× 1000 pixels [20, 69].

D. NorthWestern Polytechnical University Very High-
Resolution-10 (NWPU VHR-10)

The NWPU VHR-10 dataset [69], a prominently utilized re-
mote sensing detection dataset in recent years, comprises 800
high-resolution images extracted from satellites, sourced from
Google Earth and Vaihingen datasets [4]. These images en-
capsulate ten categories of prevalent items, including aircraft,
ships, harbors, and bridges [20, 69].

Specifically focusing on aircraft, the NWPU VHR-10 col-
lection incorporates 90 images, totaling 757 instances and
664 aircraft. The image dimensions vary, with widths of
958 and 1025 pixels, and heights of 808 and 578 pixels, re-
spectively [25]. NWPU VHR-10, designed for very high-
resolution object detection, features images annotated at the
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Fig. 5. A Graph Illustrates the Inside Design of One-stage and Two-stage Object Detectors

TABLE III.
SUMMARY OF RELATED WORK OF ONE-STAGE AIRCRAFT DETECTORS

References Published
year

Dataset Image
type

Image size
(in pixels)

Deep learning
aircraft detector

Experimental
results

[50] 2021 Gaofen-3
satellite
system

SAR 512 × 512 EBPA2N,
YOLOv5s

AC = 93.05%

[52] 2021 SAR-
ADD
dataset

SAR 500 × 500 Lightweight Detec-
tion Model (LDM)

AP = 69.54%

[54] 2022 Self-built
aircraft
sliced
dataset

SAR Varied Attentional Feature
Refinement and
Alignment Net-
work(AFRAN)

P = 90.4%
R = 93.2%
F1-score = 91.8%

[61] 2024 Mar20
public
dataset

RSI 640 × 640 YOLOv5n and
Shufflenet v2

mAP= 95.2%

[62] 2024 SADD SAR 224 × 224 YOLO-SAD AP = 91.9%

pixel level, allowing for detailed analysis of detection models.
Its significance lies in advancing the precision and accuracy of
object detection algorithms, particularly in scenarios requiring
high-resolution imagery and meticulous object delineation.

E. Remote Sensing Object Detection (RSOD)
The RSOD dataset [17] is intricately designed for object de-
tection within Remote Sensing images (RSIs), featuring a
total of 976 images across four distinct groups: airplane, over-
pass, playground, and oil drum [4]. Comprising 446 remote
sensing images, RSOD provides a comprehensive set of 4993
annotated aircraft targets, with image dimensions varying be-
tween 1072 × 975 and 1116 × 659. Sourced from platforms
such as Google Earth and Tianditu, the images exhibit spatial
resolutions ranging from 0.5 m to 2 m [44, 69].

Tailored for remote sensing object detection, RSOD holds
particular relevance for aircraft detection in satellite images,
encompassing diverse objects, including aircraft and ships.
The dataset’s detailed annotations, specifying object bound-
aries, contribute to the precision of training and evaluating
detection algorithms. RSOD’s emphasis on remote sensing
scenarios augments the development of models adept at iden-
tifying and localizing aircraft within intricate and dynamic
environmental contexts. Fig. 8 [70] shows some samples of
images for RSOD dataset.

F. NorthWestern Polytechnical University-REmote Sensing
Image Scene Classification45 (NWPU-RESISC45)

The NWPU-RESISC45 dataset [71] is a large-sized dataset
comprises a total of 31,500 images, which are categorized
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Fig. 6. A Graph Illustrates the Taxonomy of Artificail Intelligence and Deep Learning

Fig. 7. Sample Images from Caltech-101 Dataset

into 45 distinct classes. Every class comprises a total of 700
images within the RGB color space. The spatial resolution of
these photos varies from 0.2 m to 30 m. Since its publication
in 2017, this dataset has been extensively utilized for scene
classification [42, 72].

Fig. 8. Sample Images from RSOD Dataset

G. Aerial Image Dataset (AID)
The AID [67] stands as a comprehensive and expansive dataset,
capturing aerial images under diverse conditions and across
varied terrains. Covering an array of object categories, in-
cluding aircraft, AID serves as a comprehensive resource for
both the training and testing of object detection models. The
dataset’s inclusion of object-level annotations assumes a piv-
otal role in facilitating the evaluation and refinement of aircraft
detection algorithms. AID’s inherent diversity ensures that
models trained on this dataset demonstrate robust generaliza-
tion capabilities across a spectrum of aerial imaging scenarios.
This characteristic contributes significantly to the development
of detection models characterized by heightened adaptability
and precision. Notably, the AID dataset comprises 10,000
images including 360 aircrafts images distributed across 30
classes, providing a rich and varied dataset for advancing
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Fig. 9. Sample Images from DOTA Dataset

research and applications in aerial image analysis [67, 73].
These images were extracted through Google Earth im-

agery, within dimensions of 600 × 600 pixels and a resolution
ranging from 8 m to around 0.5 m [74].

H. Dataset for Object deTection in Aerial images (DOTA)
The DOTA dataset [16], tailored for large-scale object detec-
tion in aerial images, plays a pivotal role in the development
and evaluation of object detectors under diverse real-world
conditions. Capturing images from a variety of sensors and
platforms, the dataset spans sizes from 800 × 800 to 20,000
× 20,000 pixels, showcasing objects with diverse scales, ori-
entations, and shapes. Annotated by experts using arbitrary
(8 dof.) quadrilaterals, DOTA has evolved through different
versions. Focusing on aircraft detection, DOTA comprises
2806 aerial images from sources like Google Earth, with each
image sized around 4000 × 4000 pixels. Annotating 15 ob-
jects using both orientated and horizontal bounding boxes,
this study concentrates on identifying airplanes within the
dataset, which includes 269 instances distributed between
198 training and 71 validation images. The spatial resolution,
represented as Ground Sample Distance (GSD), varies from
0.09m to 4.2m, with an average of 0.40m and a standard de-
viation of 0.36m. DOTA’s high-resolution images, coupled
with meticulous annotations, position it as a valuable asset
for training and rigorously assessing the efficacy of aircraft
detection algorithms, particularly in challenging real-world
scenarios [4, 10, 35, 36].

Fig. 9 [75] shows some samples of images for DOTA
dataset.

I. Large-scale Extended Vehicle with aerial Image Remote
sensing (LEVIR)

The LEVIR dataset [76] stands as a substantial resource in
the realm of aerial image remote sensing. Comprising an ex-
tensive collection of Google Earth images, the dataset boasts
more than 22,000 images, each sized at 600 × 800 pixels, and
impressively labeled with over 10,000 individual targets [21].

Notably, the dataset is organized into three distinct cate-
gories of objects: aircraft, ships, and oil tanks, thereby provid-
ing a diverse set of targets for comprehensive analysis. The
spatial resolution of the LEVIR dataset ranges from 0.2 to

1 meter [20], ensuring a varied and realistic representation
of objects in high-resolution aerial imagery. Of particular
interest is a subset within the dataset consisting of 4724 re-
mote sensing (RS) images dedicated specifically to aircraft.
Researchers and practitioners find the LEVIR dataset instru-
mental for advancing object detection algorithms, especially
in the context of high-resolution aerial images captured from
Google Earth.

J. Detection in Optical Remote sensing images (DIOR)
The DIOR dataset [69] stands as a comprehensive and openly
accessible dataset designed for remote sensing image target
detection, featuring 20 distinct target categories [77]. Com-
prising 23,463 optical Remote Sensing Images (RSIs) with a
cumulative total of 192,472 instances, DIOR offers a diverse
range of spatial resolutions spanning from 0.5 to 30 meters.
The images encapsulate various environmental conditions, in-
cluding variations in weather, season, and illumination, while
maintaining consistent dimensions of 800 × 800 pixels [20].

Within the aircraft category, DIOR incorporates a total of
1,387 aircraft images [78]. This dataset serves as a valuable
resource for advancing research in remote sensing image tar-
get detection, providing a rich variety of scenarios and targets
to facilitate robust model training and evaluation.

K. Multi-Type Aircraft of Remote Sensing Images (MTARSI)
The MTARSI dataset [79], stands as a pioneering and pub-
licly accessible resource, marking the first dataset to feature
fine-grained aircraft classification for remote sensing images.
Distinguished by its authoritative nature, the dataset has been
meticulously labeled by seven experts in the field of remote
sensing image interpretation, lending a high degree of credi-
bility to its contents [80].

Comprising a total of 9,385 remote sensing images sourced
from Google Earth satellite imagery, the dataset focuses on
aircraft images, encompassing 36 different airports and featur-
ing 20 distinct aircraft types [80, 81]. Noteworthy among the
variety are aircraft models such as Boeing, F-22, C-5, A-10,
B-1, C-130, B-2, C-17, B-29, C-135, B-52, E-3, F-16, KC-10,
C-21, U-2, T-43, A-26, T-6, and P-63, offering a rich and
diverse dataset for advancing research in fine-grained aircraft
classification [79].

L. Synthetic Aperture Radar Data (SADD)
The SADD [82] is sourced from the German TerraSAR-X
satellite, which operates in the x-band frequency and HH
polarization mode, offering images with resolutions span-
ning from 0.5 to 3 meters. The dataset, composed of 7835
aircraft targets, along with structures, undergoes a cropping
process to generate 2966 nonoverlapping slices, each measur-
ing 224×224 pixels and featuring distinct outlines of critical
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components. Within the SADD dataset, the showcased air-
craft targets exhibit a diverse range of sizes, with a notable
proportion being relatively modest in scale [82, 83].

This dataset is a valuable resource for researchers and
practitioners engaged in radar-based object detection, provid-
ing a curated collection of radar images capturing aircraft
targets and their associated structures.

M. Military Aircraft Recognition Dataset
The Military Aircraft Recognition dataset stands as a signif-
icant contribution to the domain of remote sensing imagery,
comprising 3,842 images of military aircraft. This dataset
encompasses a diverse set of 20 distinct aircraft types, result-
ing in a total of 22,341 instances. Such a dataset serves as
a valuable resource for advancing the field of military air-
craft recognition, enabling researchers and practitioners to
develop and assess algorithms tailored to the challenges of
detecting and classifying military aircraft in remote sensing
images. The inclusion of oriented bounding boxes adds a
layer of sophistication, acknowledging the nuanced spatial
orientation of these aircraft. Researchers seeking to enhance
the robustness and precision of military aircraft recognition
models can leverage this dataset for comprehensive training
and evaluation [85].

Table IV summarizes the above-mentioned datasets.

VII. EVALUATION CRITERIA

Evaluation metrics stand as a crucial method for assessing the
effectiveness of aircraft detection algorithms, with Precision
(P) , Recall (R), and F1-score being traditional metrics, and the
Average Precision (AP) metric gaining prominence in recent
years due to its derivation from precision and recall [57].
Before delving into specific metric formulations, it’s essential
to comprehend common concepts shared among them. The
fundamental concepts include True Positive (TP) representing
a correct detection of an existing aircraft, False Positive (FP)
denoting an incorrect detection

of a nonexistent aircraft or an inaccurate detection of an ac-
tual object, True Negative (TN) indicating a correct detection
of nonexistent aircraft, and False Negative (FN) signifying an
incorrect detection of an existing aircraft.

Precision
Precision, denoted as the predicted region’s percentage

corresponding to the true region, is calculated using the fol-
lowing formula [77]:

P(Precision) =
T P

T P+FP
(1)

Recall (or Sensitivity)

Recall, also known as Sensitivity, measures the proportion
of the ground-truth region present in the anticipated region,
expressed as [77, 84]:

R(Recall) =
T P

T P+FN
(2)

F1-score
The F1-score, an average of recall and precision, is calcu-

lated as [77]

F1-score =
2×P×R

P+R
(3)

Average Precision (AP)
Average Precision (AP) [57], the most popular metric

resulting from precision and recall, is evaluated in a category-
specific manner, separately for each object category, and de-
termined by the formula (4):

AP = ∑
n
(Rn −R(n−1))Pn (4)

Where n is number of classes.

Mean Average Precision (mAP)
Mean Average Precision (mAP) [57], averaged across all

object categories, serves as the final performance measure
when comparing performance across categories and is calcu-
lated by (5).

mAP =
1
n

n

∑
i

APi (5)

Accuracy
Accuracy (AC), a critical and standard measure, is defined

as the ratio between correct samples to the number of total
samples with the equation (6) [85].

AC =
T P+T N

T P+T N +FP+FN
(6)

Specificity
Specificity is the proportion of accurately identified neg-

ative cases out of the total amount of instances that are truly
negative.The specificity formula is given by:

Specificity =
T P

FP+T N
(7)



230 | Hameed & Khalaf

TABLE IV.
POPULAR DATASETS FOR AIRCRAFT DETECTION

References Dataset Aircraft images Image type Image size
(in pixels)

Started year

[63] Caltech-101 800 Real-world
images

300 × 200 2003

[65] UC Merced
Land

100 RSI 256 × 256 2010

[68] UCAS-AOD 600 RSI 1000 × 1000 2015
[69] NWPU VHR-

10
664 RSI 958 × 808

and
1025 × 578

2016

[17] RSOD 446 RSI 1072 × 975
and
1116 × 659

2017

[71] NWPU-
RESISC45

700 RSI 256 × 256 2017

[67] AID 360 Aerial Images 600 × 600 2017
[16] DOTA 269 RSI 4000 × 4000 2018
[69] DIOR 1387 RSI 800 × 800 2018
[76] LEVIR 4724 RSI 600 × 800 2018
[79] MTARSI 9385 RSI 256 × 256 2020
[82] SADD 7835 SAR images 640 × 480 2022

VIII. APPLICATIONS

An airplane is a versatile object that serves both civilian and
military purposes, playing a crucial part in various aerial ap-
plications. Precise and swift detection of aircraft is a crucial
element in both civilian and military domains Within the civil-
ian sector, airplanes serve as a vital mode of transportation,
and the ability to detect aircraft scan significantly aid in air-
port management [53]. In addition, the efficient identification
of aircraft objects can enhance the efficiency of airports for
civilian purposes, as well as guide aircraft parking upon land-
ing [44].

In terms of military operations, the ability to identify air-
crafts is quite essential. Gathering details about the types and
quantities of aircrafts are beneficial for both air defense and
carrying out military attacks [53]. Furthermore, efficient and
precise collection data of aircraft targets in the airport and
airspace is critical, as it can aid in the gathering of combat
military intelligence and the formulation of battle plans in
real-time [82].

A. Aircraft Inspection and Maintenance
Aircraft detection is employed in aviation for activities such
as aircraft inspection and maintenance. Technicians employ
deep learning to identify issues and discern damage patterns
in aircraft using images, even those imperceptible to the un-
aided eye. Deep learning vision inspection enhances safety

and mitigates the risk of accidents or operational disruptions.
Furthermore, aircraft detection can be employed to inspect
aircraft components automatically, hence diminishing the time
and workforce needed for manual assessment. Additionally, it
enhances the objectivity and uniformity of the judgement [86].

B. Airport Management
Aircraft detection plays a crucial role in airport operations,
serving numerous purposes such as airport planning and en-
vironmental studies. Both research and commercial systems
heavily rely on text recognition to identify aircraft tail num-
bers. This task is complex because of diminished visibility,
visual obstructions, and the difficulty of reading tail num-
bers presented in different fonts, sizes, and orientations [87].
Therefore, it is necessary to implement a multi-step computer
vision system based on deep learning in order to achieve more
precise aircraft detection and identification.

C. Airport Security and Safety
Aircraft detection may also be utilized in security applications.
By strategically placing cameras, airports can monitor the
movements of aircrafts. Real-time updates of information and
reports aid in the identification of potential security risks and
enhance operational security [88].
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IX. CHALLENGES AND LIMITATIONS

The field of aircraft detection using various technologies, par-
ticularly deep learning, presents several challenges and lim-
itations that warrant careful consideration. One prominent
challenge involves the availability and quality of annotated
datasets, as the success of deep learning models heavily re-
lies on extensive, well-annotated data for training [20]. The
diversity of aircraft appearances [6], varying environmental
conditions [21], and the need for real-world scenarios fur-
ther complicate the dataset collection process. Additionally,
the interpretability of deep learning models remains a chal-
lenge, raising concerns about the ”black-box” nature of these
algorithms and hindering their adoption in safety-critical ap-
plications [13].

Computational complexity and resource requirements con-
stitute another limitation, as deploying sophisticated deep
learning models for real-time, on-board applications may
strain computational resources [27]. Moreover, addressing
issues related to the generalization of models across diverse
settings and adapting to dynamic environments poses ongoing
research challenges. Ethical considerations, such as privacy
concerns and potential misuse of detection technologies, add
to the complexity of deploying these systems responsibly [89].

As the field progresses, addressing these challenges and
limitations will be essential for advancing the reliability, ef-
ficiency, and ethical use of aircraft detection technologies in
real-world applications.

X. CONCLUSION

Aircraft detection is one of the essential branches of object de-
tection that has attracted the interest of numerous researchers,
particularly since the advent of deep learning tools, which
have significantly contributed to the field’s advancement. This
review paper demonstrates the general architecture of air-
craft detection, sensor-based detection approaches, and image-
based detection approaches. In addition, this review paper
makes an exhaustive and detailed review of deep learning
techniques for detecting aircraft comprising two-stage detec-
tors, such as RCNN, Fast RCNN and Spatial Pyramid Pooling
Networks (SPPNet) , and one-stage detectors, such as YOLO
,RetinaNet and SSD. As well as descriptions of commonly
used aircraft detection datasets and evaluation metrics are pro-
vided. Researchers must consider several aspects of recent
trends in deep learning-based aircraft detection, including the
detection of small objects, aircraft detection in real-time, and
detection in videos.
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