
Received: 17 November 2023 | Revised: 13 February 2024 | Accepted: 23 February 2024
DOI: 10.37917/ijeee.21.2.12 Early View | December 2025

Open Access

Iraqi Journal for Electrical and Electronic Engineering
Original Article

FPGA-Based Implementation of a Basic Background
Subtraction Algorithm for Real-Time Application

Marwan Abdulkhaleq Al-Yoonus*1, Dr. Saad Ahmed Al-Kazzaz2
1Electrical Engineering Department, College of Engineering, University of Mosul, Iraq

2Mechatronics Engineering Department, College of Engineering, University of Mosul, Iraq

Correspondance
*Marwan Abdulkhaleq Al-Yoonus
Electrical Engineering Department1, College of Engineering,
University of Mosul, Iraq
Email: marwanathy1972@uomosul.edu.iq

Abstract
An intelligent video system’s basic function is the detection of moving objects. Moreover, real-time systems frequently
pose limitations for applications involving video processing. Practically, to increase the frame rate or in the case of
limited hardware resources, the real-time processing is done on an interested image segment called the region of interest
(ROI). Applying the background subtraction (BGS) algorithm to this region is considered the main preprocessing
operation. This paper presents a practical study for video processing based on FPGA to detect moving objects using
the BGS technique. The proposed algorithm was developed using Verilog hardware description language (HDL),
synthesized, and implemented in the programmable logic (PL) part of the ZYBO-7Z010CLG400-1 platform. Finite
State Machine (FSM) controller method was used to design the Intellectual Property (IP) module that controls data
transfer with BRAM (loading and reading) of the input and reference image. The simulation results of the timing signal
sequences of the proposed IP module with the practical test of the BGS to detect several traffic signs of image size (90×90)
pixels demonstrate that the module functions as intended. The system that is being presented has a latency of 13.468
nanoseconds, making it appropriate for real-time applications.
Keywords
Background Subtraction, BRAM, Finite State Machine, Real-time, Timing Signals, Verilog HDL.

I. INTRODUCTION

The process of determining an object’s physical movement
within a specific area or region is known as motion detection.
Using the presumption that the current frame differs from the
background image only in that it contains moving objects,
background subtraction looks for this motion (foreground).
Consequently, all that is needed to obtain the movement re-
gions is to threshold the difference (subtraction) between the
background and the current frame [1].

An appropriate method for investigating the intrinsically
parallel nature of many video processing algorithms is to use
an FPGA-based approach [2]. One reason for this is that it
is becoming increasingly challenging to ship designs error-
free due to growing system complexity. Therefore, the ability

to correct errors after fabrication has become crucial, and
devices that are customizable, like FPGAs, greatly simplify
this process [3]. FPGA designs offer greater reconfigurability
to accommodate any functionality when compared to ASIC
designs. FPGAs have a high degree of customizability and
are a very suitable technology for high-speed parallel data
processing due to their parallel processing capability [4–6].

The BGS method is an essential step in many computer
applications. This algorithm is frequently used to detect mov-
ing objects. The fundamental idea behind BGS is that it is a
method that creates a background model and then compares
it with the current frame to identify areas where a notable
difference is present [7–9]. BGS is designed to identify only
the unusual events at the vision sensor level by removing all

This is an open-access article under the terms of the Creative Commons Attribution License,
which permits use, distribution, and reproduction in any medium, provided the original work is properly cited.
©2025 The Authors.
Published by Iraqi Journal for Electrical and Electronic Engineering | College of Engineering, University of Basrah.

https://doi.org/10.37917/ijeee.21.2.12 https://www.ijeee.edu.iq | 119

https://doi.org/10.37917/ijeee.21.2.12
https://www.ijeee.edu.iq

120 | Al-Yoonus & Al-Kazzaz

circumstances in which nothing abnormal is occurring in the
scene [10]. In order to achieve better timing performance, the
design must include finite state machine (FSM) controllers,
which is one of the key components in achieving the intended
performance of the overall design. Arbitrary counters and
sequence detectors are also implemented using FSMs, in ad-
dition to the controllers [11, 12].

Though many research papers are published in journals
and conference proceedings, only a small number of them
provide the design processes and timing illustration of video
signals for real-time applications. This paper presents a hard-
ware design and implementation of a BGS module for fixed
camera and static object detection. The present work seeks
to describe some basic principles that can add to the research
field a proposed hardware design of such an algorithm in its
basic operation. The application that has been utilized in
this work to confirm the suggested system’s functionality in a
perfect setting is traffic signs detection.

The rest of the paper is organized as follows: Section
II provides an overview of several related research papers.
In Section III a brief description is presented of the basics
of the BGS algorithm. The hardware implementation steps
for the proposed system are found in Section IV. Real-time
explanation is discussed in Section V. The experimental results
are presented in Section VI. Finally, the conclusion of this
work is given in Section VII.

II. LITERATURE SURVEY

The development of imaging and computer vision technolo-
gies is being significantly influenced by the rising popularity
of smart video systems [13]. The literature is replete with
studies that highlight the benefits of using FPGAs for em-
bedded vision systems. A summary of some of the current
research in this area is given in this section.

An alternative version of the BGS method based on inde-
pendent component analysis (ICA) was proposed by F. Car-
rizosa et al. [1]. Four image sequences were examined for
motion detection. The results from the implementation that
used both the FPGA and the embedded processor of the SoC
showed a decrease in runtime from 4326.60 to 125.81 mil-
liseconds compared with others that used only the embedded
processor. The background estimation and picture capturing
were not taken into account during the measurements in the
mentioned paper.

Using color invariant and grayscale information, G. Co-
corullo et al. [7] proposed the MBSCIG algorithm, a multi-
modal BGS. Four historical frames, a limited number, were
used to compute the background model in the proposed ap-
proach. Complex operations were avoided to minimize com-
putational time and the need for logic and memory resources.

An offline digital image processing fundamentals pre-
sented in [14] by Dharmavaram et al on an image file of
size (768×512) pixels. A processing system (PS) was used
for prototype verification. Reconfigurable logic devices (FP-
GAs) and video separation were covered by I. N. Rodrigues et
al. [15] with no video timing signals illustration. The object
detection method employed in the first stage was evaluated
using three different threshold types.

The fundamentals of moving object detection, BGS, and
FPGA were covered by Xin Ren et al. [16]. The work was
notable for using non-floating point arithmetic to simplify
hardware implementation, lower resource consumption, and
pipeline processing to increase system throughput. Although
the authors described the process steps in detail, there is no
information about resource utilization.

Giuseppe Conti et al. [17] described the testing of two
hardware implementations that use RGB and grayscale color
spaces, respectively, and an analysis of the system reliabil-
ity. The developed system had the capability to process
data in real-time, ranging from (192×192) base resolution
to (640×480), from a commercial Zenith camera at 15 frames
per second.

The survey of pertinent past and present works that came
before it makes it clear that there is a gap in the literature
when it comes to the explanation of video timing signals for
hardware design for real-time systems. In our work, we used
a video signal from an HDMI laptop port with (1280×720)
size which is different from [14] which used an image file of
(768×512) pixels. The timing illustration of the video signal
is also included in our work which was not mentioned in [7]
and [15]. In [17] no hardware design was illustrated for the
proposed system or timing description. Therefore, the objec-
tive of this work is to present the hardware implementation
of a basic BGS algorithm using Verilog HDL, along with the
design of an IP module that uses FSM to control the input
frame’s load and read processes. In order to examine the
system performance during real-time operation, we attempt
to present the video timing verification and analysis of the
suggested hardware for basic video/image processing using a
low-cost FPGA-SoC platform.

III. BACKGROUND SUBTRACTION
TECHNIQUE

The basic models include creating a background model by
taking few initial frames into consideration without any mov-
ing object. For each video sequence, an absolute difference
is computed between the reference template and the current
template known as frame difference [18]:

BMN (x,y) =
∑

N
m=1 Im (x,y)

N
(1)

121 | Al-Yoonus & Al-Kazzaz

where, BMN (x,y) represents the pixel’s (x,y) intensity of
the background model, Im (x,y) represents the pixel’s (x,y)
intensity of the mth frame and N refers to the total number
of frames used to build background model. BGS can also be
modeled using mean, median, average, or histogram analysis
over time. However, these models can handle only some
specific challenges and are best suited for static backgrounds.
The following common equation describes the operation of
the BGS algorithm [2, 16, 19]:

out put(BGS) =

{
1 if | I(i,j,t)-Ref(i,j) |> T H
0 if | I(i,j,t)-Ref(i,j) |< T H

(2)

where I(i,j,t) and Ref(i,j) refer to current input and refer-
ence image pixels, respectively, the predetermined threshold
(TH) can be estimated by training the system or via observa-
tion. In this work, a single reference frame was used, (90×90)
pixels, that can be updated manually during the operation to
implement the BGS algorithm.

IV. IMPLEMENTATION USING VERILOG HDL
The Verilog hardware description language is a formal no-
tation that can be used at any stage of the development of
electronic systems (HDL). Its machine- and human-readable
nature makes it easier to develop, verify, synthesize, and test
hardware designs. Because Verilog has so many features,
most integrated circuit (IC) designers have chosen it as their
language of choice [20, 21].

To load the background image from a video frame se-
quence in real-time, the BRAM IP was used to save the back-
ground image in gray-scale format (8-bit) in order to be the
reference image for the BGS algorithm. This background
image can be manually updated during the operation. Each
memory location in BRAM holds one byte (i.e. width =1
Byte), and the BRAM depth is computed from the selected
ROI which is (90×90) as shown in Fig. 1 and it is equal to
(90×90=8100) locations.

Fig. 1. The full input image/video size and the ROI

Fig. 2 shows the start and last address of each row cell
(Row1, Row2,, Row89, and Row90) which contains

the data of each line of the ROI which is (90 bytes/row). FSM
methods have been used to design the IP module that controls
loading (orang path) and then reading of the ROI (green path)
as shown in Fig.3. As shown, the FSM consists of seven states.
The implementation of the FSM was done using Verilog HDL,
as will be declared later in Algorithm 1. The seven states that
control the operations are; Wait-sw0, W1-R0-Vsync, Write-to-
BRAM, Wait-line-end, Check-W, Read-BRAM, and Check-R.
The blue square is for user interface to update the BG image.

Fig. 2. Memory map arrangement for loading and reading the
ROI of (90×90) pixels

The timing diagram shown in Fig. 4 explains the multi-
domain clock signal that has been depended on to implement
the proposed subsystem to control the sequence of its real-
time operation. These clock signals can be generated from the
clocking wizard IP module, the brown triangle on the negative
edge of the clk-D clock is used to provide the BRAM address
through the address counter and the orang triangle is for input
pixel sampling. The green one is the instance of RGB to
grayscale converter. The black triangle at the positive edge of
clk-D is for reading the BG pixel and the red triangle is for
subtraction operation. Finally, the blue triangle indicates the
instance of data width back converting from 8-bit to 24-bit.
By using multi clock domain the latency is equal to one pixel
clock period (13.468nsec).

V. REAL TIME MODULE EXPLANATION

For real time operation, an experimental test has been done to
measure the pixel clock frequency practically and the frame
resolution. The video signals that have been obtained from
a laptop HDMI port are shown in Fig. 5. From the video
timing signals (Hsync and Vsync) the frame resolution can be
calculated practically by using the two relationships:

122 | Al-Yoonus & Al-Kazzaz

Fig. 3. FSM state diagram to control the reading of ROI, (!) refers to Not logic gate

Fig. 4. Timing diagram analysis for basic video processing with load/read instants to/from BRAM

line per frame =
16msec

22.2usec
∼= 720 lines (3)

pixels per line =
17.2usec

1
74.25MHz

∼= 1280 columns (4)

From the results, the signals shown are for a video signal
of (1280×720) resolution, and the frame rate is 60 frames per
second (fps). So the pixel clock frequency is (74.25MHz).
The real-time operation of the proposed BGS algorithm de-
pends on these results. The whole digital system works in
multi-clock domain frequencies, 222.75MHz, 148.5MHz, and
74.25MHz, which are three, two, and one-time pixel clock fre-
quency respectively. The latency of the proposed ROI reading

subsystem was 13.468ns (one-pixel period), which matched
the requirements for real-time applications for similar system
specifications.

The complete circuit shown in Fig. 6 of the proposed
BGS algorithm with the proposed basic video processing IP
modules, was synthesized and implemented using Vivado IP
cores. Also, the two IP modules (green blocks) that control
the loading/reading of image pixels are designed using Verilog
HDL. The binary counter task is to provide the BRAM address
during load and read cycles.

The timing diagram details of the FSM (see Fig. 3) are
shown in Fig. 7. The operation sequence of the BGS algorithm
is as follows; the first signal is the clock (clk=74.25MHz). The
Vsync signal represents the vertical synchronous video signal.

123 | Al-Yoonus & Al-Kazzaz

Fig. 5. (a) upper; Active line period and lower; Hsync (b) One active frame period (c) upper; Hsync and lower; tlast (Designates
the last valid pixel of each line, and is also known as the end of line (d) upper; one frame (60.09Hz) and lower; Vsync

The active-line signal is an indication that the video data is
valid. The fourth signal is the switch signal (sw0), which can
be changed manually or by an external condition, assert the
operation (yellow circle) so that W1-R0 becomes logic “1”
and the operation started at the condition of Vsync and sw0=0,
red circle, to begin to save (load) the real-time input pixels
with the size of 90×90 pixels (see Fig. 1), into BRAM to be
the background image.

The operation of loading/reading to BRAM is enabled
by the five signals, EN-ROI, during the period (white circle)
on the selected active lines. The BRAM-add signal is the
address of BRAM [12:0]. The end of saving the whole pixels
(90×90=8100) of the ROI is controlled by the row-count signal.
The W1-R0 signal will change to logic “0” in order to initiate
the reading process from BRAM as indicated by the blue
circle. The read operation started at the next Vsync (red
square sign).

The row-count signal controls the end of saving the whole
pixels (90×90=8100) of the ROI. The W1-R0 signal will
change to logic “0” in order to initiate the reading process
from BRAM as indicated by the blue circle. The read opera-
tion started at the next Vsync (red square sign).

VI. EXPERIMENTAL RESULTS
To test the operation, a video source has been applied (60fps)
from the Laptop HDMI port to the HDMI input of the ZYBO

z7-10. Traffic sign images with the size of (90×90) pixels
are chosen to verify the operation in real-time conditions of
the proposed BGS. Each subplot shown in Fig.8 consists of
two sections; the source video, on the right, and the output
video, on the left. The sequence (see Fig. 4) of the real-time
operations that are done on each input pixel is:

1- Convert the input pixel from RGB (24-bit) to Grayscale
(8-bit).
2- Read the first BG pixel from BRAM.
3- Subtract the BG pixel from the input pixel.
4- Compare the result in step 3 with a predetermined threshold
(TH).
5- Back convert the result of step 4 from (8-bit) to (24-bit).

These operations are completed at a one-pixel clock period
(13.468nsec) by using the multi-clock domain as mentioned
before. Fig. 8a shows a traffic sign (1st input object) on the
left and the output (BGS-1) on the right. In this case, there is
no reference image in BRAM (BRAM is empty), so the input
image is displayed as shown and the BG image was loaded
manually in this step. In Fig. 8b, there is no input image and
the BG image appeared (BGS-2) as the result of subtraction.
Now the traffic sign that is loaded to BRAM appears as shown
in Fig. 8c (on the left) and the pixel-by-pixel subtraction is
(BGS-3) showing a high percentage of matching. A different
traffic sign is displayed now as in Fig. 8d (New input object),

124 | Al-Yoonus & Al-Kazzaz

Fig. 6. (a) The complete module for the proposed BGS
algorithm, (b) The designed IP cores (Green blocks) for the
FSM (Fig. 3) with binary counter and BRAM (dark blue) IPs

the result of the BGS process (BGS-4) shows less amount of
matching, and so on. Fig. 8g shows a new object and the result
(BGS-4) that indicates a large percentage of mismatching as
shown in Fig. 8h.

The resources used for implementing the recommended
module on a ZYBO Z7-10 device are listed in Table I. It
is clear from the resource utilization mentioned in the table,
that flip-flops (FFs) are the most used among other FPGA re-
sources. The other logic cell is the look-up table (LUT) which
is configured during the synthesized operation to implement
different logical functions. The suggested design has a total
on-chip power of 0.589W.

The simulation results, which describe the FSM events
sequence depicted in (Fig. 7), and the actual results of the

BGS algorithm operation, which was displayed in Figure
8, demonstrate that the suggested BGS module functions as
intended under the previously mentioned conditions to detect
stationary objects using a fixed camera.

Table II gives an overview of the implementation that
is discussed in this paper and lists relevant works that were
available in the literature. Since these works focus on different
implementation processes, the comparison is restricted to the
platform, operating frequency, processed image size, HDL
language, and processing method. So the proposed work
operates at different clock frequency domains, uses only PL
(FPGA), displays only the region of interest, and uses the
cheapest FPGA platform compared with others.

TABLE I. Resource Utilization (ZYBO-7z010clg400-1)

FPGA
Resources

Slice
LUTs

Slice
Reg.

F7
Mux

F8
Mux BRAM

Available 17600 35200 8800 4400 60
used 1254 1883 16 8 8

Utility % 7.13 5.35 0.18 0.18 13.33

VII. CONCLUSION

This paper presents a hardware implementation of a basic
BGS algorithm for video surveillance systems using Verilog
HDL, with the goal of detecting static objects. The intended
BGS module’s ability to detect traffic signs with a window size
equal (90×90) has been tested at an input image resolution
(1280×720) from a laptop HDMI port. By using a multi-
domain clock, specific operations have been carried out during

125 | Al-Yoonus & Al-Kazzaz

Fig. 7. Details of the timing signals of the FSM that control the loading and reading process of the BG algorithm

TABLE II. Summary of some existed work for the last decade and the presented work, (Pix; pixels)

Comparison
factors

Existed work
[7] 2016

Existed work
[1] 2018

Existed work
[17] 2020

Existed work
[14] 2023

Proposed
Work

Device
(Board)

Zed board
xc7z020 Zynq ZedBoard

Zed board 7020
(CPU+FPGA) Zed board

ZYBO-(7Z010
clg400-1)

Prog.
Language

VHDL with
IP cores VHDL

C++, OpenCV
3.1 libraries

C and
MATLAB

Verilog with
IP cores

Simulation
& synthesis

tools
—

MATLAB,
Python, and

Vivado
Vivado HLS

Xilinx
Vivado and
SDK Soft.

Xilinx
Vivado

-I/P image
-frame fps

1920*1080 Pix
74 fps

—
—

640*480 Pix
15 fps

768*512 Pix
from a file

1280*720 Pix
60 fps

Processed
image size 1920*1080 Pix 320*200 Pix 640*480 Pix 96*64 Pix 90*90 Pix

Data width RGB 8-bit RGB & 8-bit RGB 8-bit
BG Storage

memory
32MB External,

6 Internal BRAM — — — BRAM

Algorithm MBSCIG BGS BGS Image Enhancement ROI & BGS

Clock freq.
FPGA: 129MHz

CortexA9:800MHz 100MHz — —
-74.25MHz
-148.5MHz

-222.75MHz

the sampling period (13.468nsec). Whether an object is in the
foreground or background depends on the difference between
the current and background frames, which can be manually
updated during the operation. Results from pixel-by-pixel
subtraction can be used for further processing, such as traffic
sign identification and recognition.

A comparison has been made to illustrate the different
implementation strategies used for such an algorithm. The
recommended system can only be applied to detect a station-
ary object using a fixed camera. The suggested system can

also be expanded to differentiate between different kinds of
traffic signs depending on the data gathered by employing
smart technologies.

Future development and extension of the suggested mod-
ule could include enlarging the processed image size and
including an IP module to update the BG image whenever
there are notable changes in daytime illumination. The mod-
ule can be extended to implement the BGS algorithm with
various dimensions of an image frame in the range from hun-
dreds to thousands (e.g., 260×260, 1280×720) by using an

126 | Al-Yoonus & Al-Kazzaz

Fig. 8. Results of the implemented BGS algorithm with image size (90×90) pixels on three traffic signs. The red arrows refer to
the input image while the blue arrows refer to the BGS result

FPGA platform with more resources. Utilizing both software
(achieved by the PS part) and hardware (gained by the PL sec-
tion), which is also known as hardware/software co-design, is
another enhancement that can be made to reduce design time
and increase algorithm implementation efficiency. Finally,
although hardware implementation is time-consuming and re-
quires a wide knowledge of electronics it is the recommended
method to solve the critical time operation.

ACKNOWLEDGMENT

This research paper was completed in the University of Mosul,
Electrical Engineering Department laboratory. The authors
would like to thank the University of Mosul for their support.

CONFLICT OF INTEREST

The authors have no conflict of relevant interest to this article.

127 | Al-Yoonus & Al-Kazzaz

Algorithm 1 Verilog code for the FSM shown in Fig.3 to
control the load/read process in/from BRAM
module BRAM WR (clk, Vsync, sw0,
Active line, row count, BRAM add, W1 R0);
input wire clk, sw0, Vsync, input Active line;
output reg W1 R0;
output reg [12:0] BRAM add;
output reg [6:0] row count;
reg [6:0] pixel row;
reg [2:0] state reg;
parameter Start = 3b́000;
parameter Write EN = 3b́001;
parameter Write to BRAM = 3b́010;
parameter Wait Line end = 3b́011;
parameter row count W = 3b́100;
parameter Read EN = 3b́101;
parameter Read BRAM = 3b́110;
parameter row count R = 3b́111;
always @(posedge clk or posedge Vsync)
if (! sw0)
state reg <= Start;
else case (state reg)
Start:
if (sw0 && Vsync)
state reg <= Write EN;
W1 R0 < =1b́1;
else if (! sw0 && W1 R0==0)
state reg < = Read EN;
Write EN:
if (Vsync & W1 R0)
row count < =0;
BRAM add < =12b́0;
pixel row < =0;
state reg < = Write to BRAM;
Write to BRAM:
if (Active line && (pixel row==7d́90))
state reg < = Wait Line end;
Wait Line end:
pixel row < =0;
if(! Active line && W1 R0)
state reg < =row count W;
else if (! Active line && (! W1 R0))
state reg < = row count R;
row count W:
if (row count < 90)
state reg < = Write to BRAM;
else W1 R0 < =1b́0;
state reg < = Start;
Read EN:
if (Vsync && (! W1 R0))
row count < =0;
BRAM add < =12b́0;

Algorithm 1 (continued)
pixel row < =0;
state reg < = Read BRAM;
Read BRAM:
if (Active line && (pixel row==7d́90))
state reg < = Wait Line-end;
row count R:
if (row count < 90)
state reg < = Read BRAM;
else state reg < = Start;
default:
state reg < = Start;
endcase
endmodule

REFERENCES

[1] F. Carrizosa-Corral, A. Vázquez-Cervantes, J.-R.
Montes, T. Hernández-Dı́az, J. C. Solano Vargas,
L. Barriga-Rodrı́guez, J. A. Soto-Cajiga, and H. Jiménez-
Hernández, “Fpga-soc implementation of an ica-based
background subtraction method,” International Jour-
nal of Circuit Theory and Applications, vol. 46, no. 9,
pp. 1703–1722, 2018.

[2] I. Garcia and E. Guzmán-Ramı́rez, “A fpga-based ex-
perimentation system for designing, implementing, and
evaluating real-time video processing and analysis algo-
rithms at undergraduate level,” Computer Applications
in Engineering Education, vol. 27, no. 2, pp. 387–405,
2019.

[3] I. Skliarova and V. Sklyarov, FPGA-BASED hardware
accelerators. Springer, 2019.

[4] P. Sikka, A. R. Asati, and C. Shekhar, “Real time fpga
implementation of a high speed and area optimized har-
ris corner detection algorithm,” Microprocessors and
Microsystems, vol. 80, p. 103514, 2021.

[5] S. Wang, C. Zhang, Y. Shu, and Y. Liu, “Live video ana-
lytics with fpga-based smart cameras,” in Proceedings
of the 2019 Workshop on Hot Topics in Video Analytics
and Intelligent Edges, pp. 9–14, 2019.

[6] R. Kaibou, M. S. Azzaz, M. Benssalah, D. Teguig,
H. Hamil, A. Merah, and M. T. Akrour, “Real-time
fpga implementation of a secure chaos-based digital
crypto-watermarking system in the dwt domain using
co-design approach,” Journal of Real-Time Image Pro-
cessing, vol. 18, no. 6, pp. 2009–2025, 2021.

128 | Al-Yoonus & Al-Kazzaz

[7] G. Cocorullo, P. Corsonello, F. Frustaci, L.-d.-l.-
A. Guachi-Guachi, and S. Perri, “Multimodal back-
ground subtraction for high-performance embedded sys-
tems,” Journal of Real-Time Image Processing, vol. 16,
pp. 1407–1423, 2019.

[8] V. P. Korakoppa, H. R. Aradhya, et al., “An area efficient
fpga implementation of moving object detection and
face detection using adaptive threshold method,” in 2017
2nd IEEE International Conference on Recent Trends in
Electronics, Information & Communication Technology
(RTEICT), pp. 1606–1611, IEEE, 2017.

[9] O. Barnich and M. Van Droogenbroeck, “Vibe: A
universal background subtraction algorithm for video
sequences,” IEEE Transactions on Image processing,
vol. 20, no. 6, pp. 1709–1724, 2010.

[10] M. Benetti, M. Gottardi, T. Mayr, and R. Passerone,
“A low-power vision system with adaptive background
subtraction and image segmentation for unusual event
detection,” IEEE Transactions on Circuits and Systems
I: Regular Papers, vol. 65, no. 11, pp. 3842–3853, 2018.

[11] V. Taraate, Taraate, and Meherishi, Advanced HDL syn-
thesis and SOC prototyping. Springer, 2019.

[12] J. L. Brock, Introduction to Logic Circuits & Logic De-
sign with Verilog. Spinger, 2019.

[13] M. Tomasi, S. Pundlik, and G. Luo, “Fpga–dsp co-
processing for feature tracking in smart video sensors,”
Journal of Real-Time Image Processing, vol. 11, pp. 751–
767, 2016.

[14] D. A. Devi, N. R. Kathula, G. Kalluri, and L. S. Bondala-
pati, “Design and implementation of image processing
application with zynq soc,” International Journal of
Computing and Digital Systems, vol. 14, no. 1, pp. 377–
385, 2023.

[15] I. N. Rodrigues, C. L. S. de Melo, V. M.
da Frota Botinelly, and J. P. de Oliveira, “Fpga hard-
ware architecture with parallel data processing to detect
moving objects using the background image subtraction
technique,” in 2015 CHILEAN Conference on Electrical,
Electronics Engineering, Information and Communica-
tion Technologies (CHILECON), pp. 841–846, IEEE,
2015.

[16] X. Ren and Y. Wang, “Design of a fpga hardware ar-
chitecture to detect real-time moving objects using the
background subtraction algorithm,” in 2016 5th Interna-
tional Conference on Computer Science and Network
Technology (ICCSNT), pp. 428–433, IEEE, 2016.

[17] G. Conti, M. Quintana, P. Malagón, and D. Jiménez,
“An fpga based tracking implementation for parkinson’s
patients,” Sensors, vol. 20, no. 11, p. 3189, 2020.

[18] T. Bouwmans, “Traditional and recent approaches in
background modeling for foreground detection: An
overview,” Computer science review, vol. 11, pp. 31–
66, 2014.

[19] S. Arivazhagan and K. Kiruthika, “Fpga implementation
of gmm algorithm for background subtractions in video
sequences,” in Proceedings of International Conference
on Computer Vision and Image Processing: CVIP 2016,
Volume 2, pp. 365–376, Springer, 2017.

[20] J. Cavanagh, Verilog HDL design examples. CRC Press,
2017.

[21] I. Grout, Digital systems design with FPGAs and CPLDs.
Elsevier, 2011.

	Introduction
	Literature Survey
	 Background Subtraction Technique
	Implementation Using Verilog HDL
	Real Time Module Explanation
	EXPERIMENTAL RESULTS
	Conclusion

