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Abstract
At recent days, the robot performs many tasks on behalf of humans or in support of humans. Among the most prominent
benefits of robots for humans are removing the risk factor from humans, completing routine tasks for humans, saving
a lot of time and effort, and mastering work. This paper presents a model of an eight-legged robot equipped with an
intelligent controller that was simulated using MATLAB. The designed structure contains 24 controllers, three for each
leg, to provide flexibility in movement and rotation. Proportional Integral Derivative (PID) controller has been used
in this work , each leg contains three PIDs. A particle swarm optimization algorithm (PSO) was used to adjust the
parameters of the PID controller (Kp , Ki and Kd). The structure of eight legs robot with controller is implemented using
Simscape Multibody in the MATLAB program, where the movement of the eight-legged robot is visualized and analyzed
without the need for complex analysis associated with a mathematical model. The simulation results were conducted
in a three-dimensional environment and were presented in two scenarios . The first was implementing and simulating
the robot without using a controller, which leads to the robot falling at the starting point. The second was when a PID
controllers are used with the system, where better movement was obtained. Finally, the robustness of the controller was
verified by changing the load that the robot bears.
Keywords
Eight-Legged Robot, PID Controller, Particle Swarm Optimization (PSO).

I. INTRODUCTION

In the last decades, many types of robots were developed.
Starting with a simple mobile robot that can be readily driven
by two powered wheels and progressing to advanced struc-
tures that use four wheels to drive the motion of a mobile
robot. When four motorized wheels are used, at least four
controllers are required to control the movement of such mo-
bile robots [1]. The legged robots are needed to navigate
rugged and uneven terrain for probing and reconnaissance
because wheeled vehicles lack the necessary additional mo-
bility [2]. Over the last decade, the robotics community has
made tremendous efforts to improve robot capabilities in or-
der to fulfill the growing demands of burgeoning application
domains. Robots began to work in shared spaces with human

users, gaining access to previously prohibited contexts such as
public places, collaborative industrial settings, and residences.
This new generation of collaborative robots must demonstrate
its interaction capabilities with humans and the environment
in order to attain high levels of reliability, safety. As a result,
performance evaluation has become increasingly important in
numerous fields of robotics. Last years have seen the intro-
duction of extremely performant generations of legged robots
with amazing biomimetic skills in unstructured natural en-
vironments. While robotic locomotion on flat surfaces has
received extensive attention in the scientific literature, little
efforts have been made to systematically test locomotion abil-
ities in less-than-ideal conditions [3]. In a tough environment,
a legged robot can jump and pass hurdles safely and smoothly.
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The modeling system of a walking robot that has many legs
contains a high degree of nonlinearity and uncertainty. As
a result, a strong controller is necessary to steer the walking
robot’s mobility. The cost of multiple-leg walking robots is
undeniably high. As a result, before buying a physical robot,
a dependable controller must be appropriately constructed
and its performance thoroughly analyzed. Furthermore, sim-
ulation tools enable researchers to evaluate and estimate a
robot’s overall performance and optimize the path planning
of its process. For these reasons, using a simulator program
is helpful because it can save time and money [4]. There are
many programs that have been used to simulate the movement
of robots such as Microsoft robotics studio (MSRS) and NET
framework 4.5 that used by authors in reference [5]. Another
study used SolidWorks and SimScape Multibody packing to
model and investigate the performance of a platform that in-
cluded parallel robots and a developed controller [6]. Other
researchers designed a control method, visualized the out-
comes, and analyzed simulation findings using simulation
tools such as 20-sim Mathematica, Dymola/Modelica, Mat-
lab/Simulink, and others [7–11].
The SimScape Multibody toolbox in MATLAB is used in this
work to simulate and display the motion of an eight-legged
walking robot using a proposed controller. The PID approach
is utilized to design the walking robot’s controller system. The
particle swarm optimization (PSO) algorithm is used to find
the best PID controller parameters. By varying the carried
weight of the walking robot, the effectiveness and robustness
of the developed controller are investigated. The acquired
simulation results demonstrate the validity of the suggested
robot controller, and overall performance has been enhanced.

II. MODELING THE EIGHT-LEGGED ROBOT
BY USING SIMSCAPE MULTIBODY

TOOLBOX

Simulating robots with a controller is considered a very im-
portant issue to study the strength and effectiveness of the
controller to drive the robot under any disturbances, as re-
searchers used many simulation programs to conduct this
problem [12]. The Simscape Multibody toolbox used to simu-
late a three-dimension robotics and construction equipment
and it includes a variety of libraries and Simulink blocks
that can be used to design robots with any architecture, in-
cluding mobile robots, manipulators with various numbers of
joints, and walking robots [13]. It also includes simulation
and control interfaces that help users in obtaining necessary
simulation results and displaying actual robot motion. Fig. 1
shown below indicates the eight-legs robot in simscape multi-
body in Matlab. This robot consists from torso with eight legs

Fig. 1. visual display of eight-legs robot in simscape
multibody in Matlab

Fig. 2. the main structure of eight legs walking robot

and each leg contain three joints (hip, knee and ankle).

The Fig. 1 shows the visual display of the eight-legged
robot built by simscape multibody toolbox in MATLAB.

Fig. 2 shows the main components of the eight-legged
robot that are linked together. Begin with the block of the
world frame which is connected with the solver configuration
and mechanism configuration blocks.

Fig. 3 shows the robot sub-system that is shown in Fig. 2
that contains eight legs.

As shown above in Fig. 4 the subsystem of leg in Fig. 3
that contains three joints (hip, knee and ankle) and each joint
contains one PID controller with torque. It also contains the
upper and lower legs and foot.

Fig.5 show the joint subsystem in Fig. 4 that contains a
joint that is controlled by PID controller . In addition, there
is a revolute joint that used to constrain the movement of
two random frames connected to the joint’s base and follower
frames to a single, pure rotation around a shared axis.

Fig. 6 show the PID controller used to control the move-
ment of the joints of an eight-legged robot.
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Fig. 3. robot sub-system that contain eight legs

Table I shown below contains the blocks used in build-
ing the eight-legged robot and a description of each of them.
These blocks are found in the MATLAB Simscape Multibody
Toolbox.

III. CONTROLLER SCHEME

In this part, the control system for the eight-legged robot was
designed and implemented. The robot consists from eight
legs and each leg consists of three joints, and each joint is
controlled by one PID controller. Thus, the robot contains
24 PID controllers in total. The control system for one leg
is introduced and the same issue will be applied to the other
legs. Each leg contains revolve joint. The block diagram of
the revolute joint has two inputs: B (is the port that connects
the current link to the prior one) and the second input t (it
denotes the control signal provided to the torque). The output
of the revolve joint are: F (is the point of contact between the
current link and the next one). The w and q are the speed and
angle of a current link, respectively. The revolve joint shown
in Fig. 7.

In this paper, two scenarios are studied for the robot, the
first scenario is an open-loop system and the second scenario
is a closed-loop system with a PID controller and the simula-
tion results between the two scenarios are compared:

TABLE I.
SIMSCAPE BLOCKS

blocks name describtion

Solver
Configuration

establishes the simulation’s
setup parameters

World Frame

construction of the
mechanicalmodel’s
reference point.
Global Frame.

Mechanism
Configuration

Setting up the initial
mechanical and
simulation parameters

Rotational Joint

To interpret motion at
angles between the actuators
and the fixed base, a
rotational joint is used.

Solid Block
The solid blocks
offer solid characteristics.

PS-Simulink

PS-Simulink Converter
that converts the input
physical signal into
a simulink output signal
or vice versa

A. Open Loop System
In this case, the eight legs robot is built without controller
and it is tested to see if it walked stably at a straight line.
The results show that the robot fell at the beginning of the
simulation and lost its motion stability as shown in Fig. 8.

Fig. 9 shows that the robot falls when the simulation be-
gins. This is due to the lack of a controller in the joints of the
legs, which helps in straight and stable movement. Therefore,
in the second scenario, the PID controllers are used to control
the movement of the eight-legged robot.

B. Closed-loop System with PID Controller
The PID controller is an important part of the process indus-
try’s control loop [14]. Due to its straightforward structure,
simplicity of design, and low implementation costs, traditional
proportional plus integral plus derivative (PID) controllers
continue to be the most extensively used approach in industry
for many control applications [15]. The abbreviation PID
stands for the first letters of words of proportional-integral-
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Fig. 4. One leg of eight legs robot (leg subsystem)

TABLE II.
SHOWS THE ROBOT’S DIMENSIONS.

Parameter’s Name Dimensions (cm)
Torso x, y and z 5,10 and 7
Upper leg length 10
Upper leg radius 1.25
Lower leg length 10
Lower leg radius 0.75
Foot x, y and z 8,6 and 10

derivative and these parameters can be adjusted appropriately
to improve plant performance, reduce overshoot, eliminate
steady-state error, and encourage system stability [16]. Choos-
ing the appropriate PID gains is the basic controller’s main
problem. If fixed gains are applied, the controller might not
provide the required control performance when plant features
and operating conditions change. As a result, tuning is nec-
essary to make sure the controller can handle changes in the
plant [17]. In order to obtain the best performance of the PID
controller, the parameters of the PID (KP, KI and KD) must be
tuned. There are many optimization algorithms that perform
tuning to improve the performance of the controller, including
these algorithms: Genetic Algorithm (GA), Particle Swarm
Optimization (PSO), Artificial Bee Colony (ABC) and Ant
Colony Optimization (ACO) [18]. The main equation for the
output of a PID controller is:

U(t) = Kpe(t)+Ki
∫

e(t)dt +Kd ė(t)

where e(t) represents the difference in error between ref-

erence and actual values. The actual value is the true output
response of the plant, while the reference value is the signal
that is delivered based on the desired input of the plant. The
block diagram of the PID controller can be shown in figure(9).

In this paper, we used the PSO optimization algorithm
to adjust the parameters of the PID controller used in the
eight-legged robot. Russell and James first presented the
well-known PSO algorithm in 1995, drawing inspiration from
the social behavior of fish and birds. Individuals relate to
particles in PSO, which is regarded to be an adaptive algorithm
based on a social-psychological metaphor. PSO adjusts by
stochastically going back to previously successful regions
[19].Position update and velocity update are the two primary
operators in PSO. The PSO basic design is easy to excite and
just requires a few parameter adjustments. The behavior of
the PSO mechanism, which is based on particles, is designed
to mimic the success of nearby particles. The objective is to
locate the best path across a variety of search spaces [20].

Where, denotes the position of the particle and stands for
the velocity of the particle. The following equations represent
the updated PSO parameters:

Vi(t +1)=ω ∗Vi(t)+C1r1(t)∗ [Pbesti −Pi]+C2r2(t)∗ [gbesti −Pi]

(1)

Pi(t +1) = Pi(t)+Vi(t +1) (2)

Where r1 , r2 are random numbers selected from the interval
[0,1]. ω is inertia weight. Pbesti = Pbest1Pbest2. . . . . .Pbestd
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is the personal optimal solution of the particle
gbesti = gbest1gbest2. . . . . .gbestd is the global optimal solution
of the generation particle.

Updates to the particle position are made using Equation
3, whereas updates to the particle velocity are made using
Equation 2. The fitness function determines the personal
best (Pbest), which denotes the best value of each particle in
the search space, followed by the global best (gbestd), which
denotes the best value of the particle across the board for
the swarm. The loop is repeated until the best solution is
found. Each particle will utilize the updated velocity to update
its position after the initial update of the particle’s velocity
by (Pbest) and (gbestd). The iterations will continue till the
maximum number has been reached. In order to create the
optimal performance with the least amount of error, the plant
uses the PID controller’s obtained values. The PSO technique
calls for clearly defined parameters for the swarm number,
maximum iterations, and absolute permitted error. The PSO
parameters should be carefully chosen in order to obtain rapid
convergence. A great deal of expertise and understanding
of system behavior are required for the skill of selecting the
appropriate settings [21]. The objective function that used to
improve the gait of the walking robot is:

ob jective f unction(OF) =
T

∑
t=0

e2(t) (3)

Where T is the maximum number of iterations. To achieve the
best control performance at nominal operating circumstances,
the stochastic algorithm can be used to tune the gains of PID
controllers. PSO is used to adjust the Kp, Ki, and Kd PID
gains and parameters. The algorithm can be seen below.

The PSO algorithms initialization parameters used in this
work can be seen in the table III shown below:

Table IV shows the best parameters found from the particle
swarm optimization (PSO) algorithm.

Fig. 5. joint subsystem of eight-legged robot

Fig. 6. PID controller system

TABLE III.
THE PSO ALGORITHMS INITIALIZATION PARAMETERS
USED IN THIS WORK

Initialization parameter PSO
Number of iterations 50
Size of populations 50
Inertia weight 0.8
Personal learning factor 2
Global learning factor 2
Number of variables 3
Lower bound of variables 0
Upper bound of variables 100

IV. SIMULATION RESULTS AND DISCUSSION

In this part, simulation results utilizing the Simscape analysis
approach show how the system functions without the require-
ment for a challenging mathematical equation model of an
eight-legged robot. This kind of analysis decreased the need
for the physical system to be developed in real life and expen-
sively tested with various control approaches. The proposed
eight-legged robot model’s performance and robustness under
the influence of road disturbances are investigated through
simulation simulations. There are two scenarios are examined:
In the first, the robot moves in an open-loop system without

Fig. 7. Revolute joint
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Fig. 8. The eight-legs robot with open-loop system controller

any controllers. The second system employs closed-loop PID
controls and The third, increasing weights to assess the stabil-
ity of the controller.

A. Open-loop System
In this scenario, there is no controller. On the road, the robot
should be able to move vertically and complete the motion
without falling. Sadly, the robot is immobile in this scenario
because it lost equilibrium and dropped to the ground as soon
as the simulation began. The robot falling is shown in the Fig.
8.

B. Cosed-loop Using PID Controller
In this case, we will test the robot with the PID controller
present, but without putting weight on the robot. Fig. 11
shows the simulation results of an eight-legged robot without
weight.
It is difficult to demonstrate the functionality of each joint

because a walking robot has four legs, each with three links.
As a result, just the front right leg’s performance is shown in

Fig. 9. The block diagram of the PID controller
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Fig. 10. Reference angle and actual angle comparison for
ankle joint.

this piece. The Torques of each joint of front right leg of the
robot are shown in Fig. 12.

Additionally, make a comparison between the reference
angle with the actual angle. Fig. 13 , Fig. 14 and Fig. 15
depict the angle of ankle, the angle of knee and the angle of
hip respectively.

C. Robustness Test of Proposed PID Controller
Two scenarios of disturbances are applied to the controlled
system in order to investigate the robustness and efficacy of
the designed controller. In the first scenario, the walking robot
carries an extra kilogram of weight on its back (1kg) as shown
in Fig. 16.
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TABLE IV.
THE BEST PARAMETERS FOUND FROM THE PARTICLE
SWARM OPTIMIZATION (PSO) ALGORITHM

PID Kp Ki Kd
Controller 1 5.5269 21.8716 -0.06424
Controller 2 22.2173 90.1853 -0.26839
Controller 3 30.28177 158.32704 -0.57732
Controller 4 5.0143 14.7205 0.14882
Controller 5 47.28025 313.82798 -0.48928
Controller 6 28.7516 119.2822 0.4294
Controller 7 31.94132 162.0567 -0.3828
Controller 8 34.1137 168.7684 -0.2241
Controller 9 66.6964 19.65366 -0.2301
Controller 10 12.8901 165.2114 0.19982
Controller 11 22.7589 400.792 -0.03485
Controller 12 18.9221 350.6995 0.04146
Controller 13 11.48341 161.99661 0.06266
Controller 14 19.9210 251.9785 0.0304
Controller 15 25.2465 590.8900 -0.2182
Controller 16 45.7930 375.752 -0.6269
Controller 17 36.3697 189.1284 -0.15095
Controller 18 41.2373 233.0145 0.1947
Controller 19 39.61914 242.7642 -0.3423
Controller 20 17.45206 67.0916 -0.32989
Controller 21 12.39902 40.3531 -0.08427
Controller 22 26.5328 102.2719 0.5455
Controller 23 23.4975 220.2998 -0.0915
Controller 24 15.98097 159.2325 0.2113

Fig. 17 depicts the right front leg’s PID controller efforts
for the ankle, hip, and knee when 1 kg is applied. Fig. 18 , Fig.
19 and Fig. 20 show the comparison between the reference
and actual angles for (hip,knee and ankle) of the front right
leg leg when 1kg is added.

In the second scenario, the walking robot carries weight
on its back (3kg).

Fig. 22 depicts the right front leg’s PID controller efforts
for the ankle, hip, and knee when 3 kg is applied.

Fig. 23 , Fig. 24 and Fig. 25show the comparison between
the reference and actual angles for (hip,knee and ankle) of the
front right leg leg when 3kg is added.

According to the case two results mentioned above, the
robot can walk steadily and can reach the target without falling
when it is carrying a 3-kg load on its torso and using a closed-
loop control system with PID controllers.

Fig. 11. Walking robot with no load at initial position
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Fig. 12. Front right leg control efforts of the walking robot
with no load

V. CONCLUSIONS

We used two ways to control the eight-legs robot. The first
way open-loop system, as we observed that the robot falls
at the beginning of the simulation. The second method The
PSO algorithm is used to modify the PID controllers’ best
parameters so they can be used with the eight-legged walking
robot. Twenty-four PID controllers are created for each of
the twenty-four joints in the walking robot under study. The
walking robot is implemented using the Simscape toolbox,
and the proposed controllers are built using an optimization
approach using the simulation toolbox. According to the sim-
ulation results, the suggested controllers successfully directed
the walking robot to adopt the desired gaits. By placing addi-
tional weights on the back of the walking robot, the proposed
controllers’ resilience has been evaluated. There is an addi-
tion of two separate weights, 1 kg and 3 kg. The controlled
system in both situations has been steady and has flown the
desired gaits while rejecting disruption. As a result, the over-
all designed system shows that it can be used effectively and
suitably to operate the walking robot. In this work, it was
proven that the PID-PSO method is an effective and fast way
to improve the controller and is better than other traditional
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ankle joint.
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Fig. 14. Reference angle and actual angle comparison for
knee joint.

methods used in previous studies. Also, the robot became
more stable when walking, walked a longer distance within a
certain time, and carried larger weights.
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Fig. 23. Reference angle and actual angle comparison for
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Fig. 25. Reference angle and actual angle comparison for hip
joint.
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