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Abstract

Wind turbine (WT) is now a major renewable energy resource used in the modern world. One of the most significant
technologies that use the wind speed (WS) to generate electric power is the horizontal-axis wind turbine. In order to
enhance the output power over the rated WS, the blade pitch angle (BPA) is controlled and adjusted in WT. This paper
proposes and compares three different controllers of BPA for a 500-kw WT. A PID controller (PIDC), a fuzzy logic
controller (FLC) based on Mamdani and Sugeno fuzzy inference systems (FIS), and a hybrid fuzzy-PID controller
(HFPIDC) have been applied and compared. Furthermore, Genetic Algorithm (GA) and Particle swarm optimization
(PSO) have been applied and compared in order to identify the optimal PID parameters (kp, ki, kd). The objective of GA
and PSO is minimized the error signal in output power based on actual WS. The results for three different controllers
show that the optimal hybrid FPIDC based on the Sugeno inference system with PSO produces the optimal results regard
to reduce the error signal and stable output power under actual WS.
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I. INTRODUCTION

Renewable sources of energy including solar, wind, geother-
mal, and bio fuels have become more popular due to en-
vironmental degradation and global warming [1]. WT can
categorized as horizontal-axis wind turbine (HAWT) and a
vertical-axis wind turbine (VAWT). HAWT extracts more
power than VAWT [2]. The main component of WT that di-
rectly affects output power and efficiency is BPA. The blade
design has several factors, such as blade length, blade shape,
and pitch control. The performance of WT can be enhanced
when improving BPA controller [3]. BPA of WT is used to
regulate the power generation from WT as well as minimize
the fatigue load exerted on the turbine-related components.
BPA control is typically used when WS is higher than the
rated WS to maintain the power generation of WT at the rated
power [4].

Detailed BPA controllers of WT can be either based on
traditional or artificial intelligence controllers. The traditional

PIDC has been used to improve the BPA of WT [5]. PIDC
based on either conventional or sophisticated calculation can
control the BPA system and keep the power generation of
WT near to the set point in both with and without distur-
bances [6]. When the WS exceeds the turbine’s rated speed, a
PID controller is designed to manage the BPA of WT [7,8].
On the other hand, in the advanced design approaches, model-
ing, simulation, and computational optimization are necessary.
Therefore, PSO and GA are the most widely used techniques
for optimizing nonlinear and highly complicated problems [9].
An intelligent Genetic algorithm (IGA) approach can find
the optimal tuning of PID parameters for the BPA controller
better than GA [10]. PSO and GA are compared to find the
optimal tuning of PID parameters and the results shows PID
controller based PSO has better output power flow and the
dynamic response than PID controller based GA [11]. Fur-
thermore, ant colony optimization (ACO), PSO, and classical
Ziegler—Nichols (Z-N) algorithms have been compared to find
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the optimal parameters of PID controller for BPA of WT and
the results show PID based on ACO optimization provide the
lowest error in output power generation than the other algo-
rithms [12]. On the other hand, FLC is the most often used
for controlling nonlinear systems. When obtaining an accu-
rate mathematical representation of the system is complicated,
FLC is becoming more popular due to it is ability to use ex-
pert knowledge in the control design as well as it can improve
the flexibility of nonlinear systems in the presence of fluctu-
ations or uncertainty. The comparison between FLC based
on Mamdani FIS and PIDC for BPA controller in HAWT
are presented and showed that FLC is effective in decreasing
fluctuations and normalizing the output power better than PID
controller [13—17]. Also, the output power generation of WT
is stabilized when using FLC base on Sugeno FIS [18]. The
hybrid FPIDC is a combination of FLC with PIDC. Further-
more, the hybrid FPIDC can reduce the overshoot of output
power generation under different wind speed [19]. The hybrid
FPIDC performed better BPA controller of WT than PIDC
and FLC [20-22]. The hybrid FPIDC has been used for BPA
controller and results for 1.5 MW WT show that the hybrid
FPIDC can improve the performance of WT better than PIDC
and FLC [23]. Optimal hybrid FPIDC based on GA has
been applied and achieving improvements in output power
and structure stability of Floating offshore wind turbines [24].
Also, GA is used to find the optimal tuning of PID param-
eters in optimal hybrid FPIDC based on Mamdani FIS for
providing better power generation than PID controller without
optimization [25].

This paper compares three different controllers for BPA
based on specific actual WS: PIDC, FLC, and hybrid FPIDC
have been used and compared to find the best controller. A
500-kw wind turbine system is built using MATLAB® 2022
Simulink with taking into account the effect of BPA. The
novelty of this paper is the comparison between two FIS
(Mamdani and Sugeno) for FLC in WT. Furthermore, PSO
and GA are compared to determine the optimal parameter
values (kp, ki, and kd) used for PID and hybrid FPIDC. The
results demonstrate that the optimal hybrid FPIDC based on
Sugeno FIS and PSO can show the optimal results in stable
output power and error signal.

II. CHARACTERISTICS OF WT

Turbine speed must be controlled during the operation depend-
ing on WS and output power. This control technology works
to protect turbine systems and increase output power in both
high and low WS situations. As shown in Fig. 1, the output
power of WT has four operation zones based on variable WS
and BPA. In (I.) zone when the cut-in speed is higher than
WS, the output power is zero. (II.) zone has the maximum
power point tracking because it is between cut-in speed and
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Fig. 1. Characteristic curve of WT [18].

rated speed. (IIl.) zone is between rated speed and cut-out
speed. Finally, in (IV.) zone, WT is stopped because WS is
beyond the cut-out speed [18]. The power coefficient (Cp) is
a main factor in calculating the power generation of WT. In
general, Cp depends on the tip speed ratio (1) and pitch angle
(B). As shown in Fig. 2, Cp describes how effectively WT
generates power. (1) and Cp are used to determine WT speed.
Furthermore, (1) and Cp changed based on different values of
(B). Fig. 2 shows that when (f3) is zero, Cp is maximum [18].
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Fig. 2. Power coefficient in different BPA.
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III. MATHEMATICAL MODEL OF WT

This section explain the mathematical model of wind turbine
including the effect of BPA. The following formula used to
calculate the power generation of WT [18]:

Py=05p AV )]

Where (P,) is the wind power (Watt), (p) is the air den-
sity (kg /m?), (A) is the blades swept area (m?), and (V) is
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WS (m/s). The mechanical power generation of WT can be
calculated as below:

Pn="PyCp(1,B) )

The mechanical power (P,) of WT is calculated by using
Equations (1) and (2).

Pn= 0.5p AV’ Cy(A,B) (3)

Cp is nonlinear in most cases and it can change according to
variations in WS as shown in the Equation below

116 =)
Cp=0.5 7—0.4/3—5 e 4’+0.00681  (4)

When (4;) value in (5) is swapped in (4), the Cp value is
obtained. Here, the calculations are made simpler by using

the value of the intermediate variable (A;), which is written as
the following Equation:

1/Ai =1/(A + 0.088)—0.035/ 3B + 1) (5

Tip speed ratio can be calculated based on the mechanical
angular speed as follows:

A= (wywxR)/ (V) (6)

where (R) is the radius of turbine blade (m) and (w,,?) is the
rotor angular speed of the turbine (rad/s). Any modification

in the rotor speed or WS in WT affects (A) which varies Cp.
These modifications also cause variations in the power output.

The electrical power and mechanical torque in WT are shown
below:

PCIZ 0.5 P A V3 Cp(ﬁaz’)ngen (7)

T =Pel % Wy, 3

where (P,;) is the turbine electrical power (watt), (7;,) is the
turbine mechanical torque (N.m), and ()4c,) is the generator
efficiency.

IV. BPA CONTROLLERS

This section presents the controller of BPA in three different
strategies: PIDC, FLC, and hybrid FPIDC. These controller
strategies are used to maintain the power generation of WT in
a stable region.
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Fig. 3. Principal diagram of PIDC.

A. PIDC Design

The traditional PIDC is proportional (P), integral (I), and
derivative (D). PIDC is used to create an output based on
the controlled target [10]. Fig. 3 shows the principles of the
traditional PIDC where u(t) is the out of control, c(t) is the
output of controlling system, r(t) is the reference input, and
e(t) is error. The output of the PIDC in the time domain is
equivalent to the control input to the plant and is as follows:

u(t)= kpe(t) +ki ./e(t)dt-f—kd% ©)]

The control gains (k,), (k;), and (ky) are constants and it must
be determined during the design process.

B. FLC Design

This section explains the design and working principle of
the FLC with two FIS (Mamdani and Sugeno). MATLAB
Simulink is used to design the FLC includes, including fuzzifi-
cation, defuzzification, inference system, and the rule base. In
FLC, each object is given a membership degree in the range
[0, 1] [26]. Error and error change are designated as two fuzzy
input variables. The rule base and FIS specify the amount, of
changes in angle based on the output variable. Mamdani and
Sugeno FIS are used and compared. Fig. 4 shows the main
parts of the FLC system.
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Fig. 4. The structure of FLC.
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C. Hybrid FPIDC Design

For higher sensitivity and uncertainty , the hybrid fuzzy-PID
control design have the input membership function as a Gaus-
sian form, while the output membership function a triangular
form. The hybrid controller based on FPIDC is illustrated in
Fig. 5.

Fuzzy-PID Controller

G

AKp AKi AKd
Set value of

the position
(_\ I PID Controller I—-l Plant
| Feedback of the position

Fig. 5. The FPIDC design structure.
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V. OPTIMIZATION TECHNIQUES FOR
OPTIMAL CONTROLLER

To obtain the optimal tuning for PID parameter values (k,),
(ki), and (kg) in this paper, PSO and GA are applied and
compared to determine the optimal PID parameter of BPA
controller. The five essential components in optimal tuning of
PID parameters are defined as below:

1) Design Variables:
The main parameters of PID (kp, ki, kd) are defined as the
design variables of the BPA controller in WT.

2) Objective Function:

Minimized (min) the error signal in the power generation
and WS is the main objective function. The total error (E)
is calculated based on the summation of the absolute errors
obtained from power (P) and speed (W).

minE:Z |( Pac—Pref ) + (Wac—Wret ) | (10)

WhereP,. and P, are actual and reference power outputs,
while W, and W,,.r are actual and reference WS.

3) Constraints:
The Constraints of the PIDC are defined based on the mini-
mum and maximum levels of each parameter as given below:

Kpmin SKp < Kpmax
KiminSKi < Kimax
Kdmin SKd < Kdmax

where K),,K;and K are the PID parameters; Kpmin Kimin.
and Ky, are the minimum levels of PID parameters and
Kpmax sKimax and Ky, are the maximum levels of PID pa-
rameters.

Y

4) Optimization Algorithms:
GA and PSO are used to determine the best PID controller
parameters as the following.

A. Genetic Algorithm (GA)

The evolutionary algorithm based on a biological process
used to optimize complex objective functions is called GA.
GA uses seven steps to determine the best design variables:
a parameter selection, decoding and encoding, population
size, natural selection, combining, mating, and mutations. GA
repeats the steps until the GA is converged [27].

B. Particle Swarm Optimization (PSO)

A population of interacting elements that can find the optimal
design variables through the space of search is defined as
PSO. Experience is defined as interacting elements (particles)
traveling (flying) in quest of space to locate the optimum
position. In the search space, each interacting piece saves the
optimal location and neighborhood. PSO has seven steps to
calculate the optimal design variables: defining the selection,
finding the location, specifying the velocity vectors in each
interacting element, finding the fitness values, calculating the
locations, calculating the speed, and adjusting the location
until the specified requirements are met [27,28].

5) Optimization procedure

This section shows the procedure to calculate the optimal
PID parameter of BPA controller in WT. First step is define
the main component of the optimization algorithm : design
variables, objective function, and constraints and apply op-
timization algorithm (GA or PSO) as explain in previous
section. Second step is compute output power, pitch angle,
and wind speed based on initial PID parameters for actual WS.
third step is calculate the objective function (min(E)) based on
Equation 10. Final step is finding the optimal value of (k,, k;,
and k) after several iterations . Fig. 6 shows the flowchart of
the optimization procedure to find the optimal PID parameter
for the BPA controller of WT.

VI. SIMULATION RESULTS AND DISCUSSION

Simulation model and results of 500-kw HAWT are presented
in this section. WT system has been tested for three different
controllers based on actual wind data as shown in Fig. 7.

A. Simulation Model of WT

In this paper, an advanced WT is created using MATLAB
Simulink to provide the results of all operational variables and
conditions for the input and output parameters. A simulink
model for Cp has been created using Equations (4) and (5)
to demonstrate how (A1) and (f3) affect the amount of power
produced by WT as shown in Fig. 8.
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Fig. 6. Flowchart for the optimization process.
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Fig. 7. WS for the 500 kW wind turbine.

According to Equations (3), (4), and (5), the variation in
WT factors, such as WS, air density, swept area, and C,, af-
fect the power production. Therefore, the Simulink model as
shown in Fig. 9 is created by using Equations (7) and (8) and
Fig. 10 shows the servo motor block based on the following
formula (1/(s (s + 1))). Based on rated power circumstances,
the generator efficiency is assumed to be 0.95 [29]. For rele-
vant operations in MATLAB simulation, two MATLAB func-
tions are defined in the Simulink model. The first one presents
the cut-in WS while the second one presents the cut out WS.
One of them is used to start the controller when working at
the nominal WS, while the other function is used to stop the
controller when working over the nominal WS.

Fig. 11 shows the complete model for WT system includ-
ing three different controllers. Table I provides a list of the
specifications used to create the 500-kW model [10]. The
number of rotor blades on WT determines the ideal tip speed

Fig. 8. Simulink model of power coefficient.

ratio (TSR).

generator
efficiency

Cp

omega (rad/s)

Fig. 9. Simulink model of WT system.

1
=
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Fig. 10. Simulink model of servo motor.

Fig. 11. Simulink model of WT system with all controllers.

In this paper, TSR is considered (4.19). If the airfoil is
carefully built, the optimal TSR could be approximately 25%
to 30% higher than this ideal value. The ideal TSR may exceed
the stated limits depending on the type of profile utilized [30].
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TABLE 1.
SIMULATED WT SYSTEM PARAMETERS [10]
rated output power 500 kilo Watt
cut in WS 3 m/s
rated WS 12 m/s
cut out WS 25 m/s
diameter of the rotor 48 m
turbine blade number 3
rated rotor speed 30 rpm
range of rotor speeds 10-30 rpm
gearbox rate 01:50
generator type and number PMSG -2

B. Controller Model of WT

In this paper, three different controllers have been applied and
compared to find the best controller of BPA: PIDC, FLC, and
hybrid FPIDC.

1) Optimal PIDC

Figs. 12, 13, and 14 show the output power, pitch angle, and
power error when PIDC is used. These results demonstrate
that PSO-based optimal PID provides better results than GA
in terms of output power and error between the reference and
actual WS.
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Fig. 12. Output power in PID-GA and PID-PSO.
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Fig. 13. Optimal BPA in PID-GA and PID-PSO.
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Fig. 14. Absolute Error in PID-GA and PID-PSO.

2) Fuzzy Logic Controller

FLC is used based on two FIS: Mamdani and Sugeno. Fig.
15 shows the input of FLC (error and derivative of error) as
membership functions. Fig. 16 displays the amount of change
in pitch angle for only Mamdani system. Table II provides a
list of properties for Mamdani and Sugeno, these properties
are used in the design of FLC. The Mamdani and Sugeno FIS
are similar, however, the main difference is Sugeno FIS does
not involve clipping in output membership function because
the Sugeno FIS output are either linear or constant.
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Fig. 15. The input variables fuzzy sets.
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TABLE II.

PROPERTIES OF MAMDANI AND SUGENO FIS
Properties Mamdani | Sugeno

And Method Min Min

Or Method Max Max

Implication Method Min Prod

Aggregation Method Max Sum
Defuzzification Method | Centroid | Weaver

As shown in Fig. 17, the fuzzy controller surface for
Mamdani and Sugeno FIS illustrates the relationship between
input and output variables as three-dimensional graphics. The
rule base for the two FIS is the same as shown in Table III.

TABLE III.
FLC RULES FOR MAMDANI AND SUGENO

. Derivative of error
Pitch angle change Negative | Positive
Negative PB PS
Error Zero Z Z
Positive NS NB

Two input values have three linguistic levels for error and
two linguistic levels for the derivative of error with the follow-
ing names: negative (N), zero (Z), and positive (P). While five
linguistic levels in the output value with the following names:
positive big (PB), positive small (PS), zero (Z), negative small
(NS), and negative big (NB). The comparison in output power
for two FIS (Mamdani and Sugeno) is shown in Fig. 18 and
the absolute Error is shown in Fig. 19. As shown in both of
the Figs, Sugeno FIS has better stability and lower error signal
than Mamdani FIS.

3) Optimal Hybrid FPIDC

Fig. 20 shows the fuzzification of FLC for Mamdani and
Sugeno FIS. Fig. 21 shows the defuzzification of the output
variables for Mamdani FIS. The input membership values
have five linguistic levels with the following names: negative

Mamdani FIS

Change in pitch angle

Derivative of Error 1 A

Sugeno FIS

Change in pitch angle

Derivative of Error B

Error

Fig. 17. FIS surface for Mamdani and Sugeno.

high (NH), negative low (NL), zero (Z), positive low (PL),
and positive high (PH).There are five output linguistic lev-
els: negative small (NS), negative medium (NM), negative
medium-big (NMB), negative big (NB), and negative very-big
(N'VB). Sugeno output membership functions (MFs) are to be
constant. The control rule for each parameter of PIDC has 25
specific rules, as shown in Table IVIV. The complete control
rules of the hybrid FPIDC have 75 rules.
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TABLE IV.
RULES FOR MAMDANI AND SUGENO FIS
Dk Derivative of error
P NH | NL | Z PL | PH
NH NS NS NS NMB | NMB
NL NS NM NM NB NMB
Error Z NS NM | NMB NB NB
PL NM NM NB NB NB
PH | NMB | NMB NB NVB | NVB
Dki Derivative of error
NH NL Z PL PH
NH | NVB | NVB NB NB NMB
NL | NVB NB NB NMB | NM
Error | Z NVB | NMB | NMB NB NS
PL NM | NMB NS NB NS
PH NS NMB NS NVB NS
Derivative of error
Dkd NH NL Z PL PH
NH NS NS NM NM | NMB
NL NS NM NM | NMB | NMB
Error | Z NS NM | NMB NB NVB
PL NM | NMB NB NB NVB
PH | NMB | NVB NB NVB | NVB

- ‘
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Fig. 20. The input variables fuzzy sets for hybrid FPIDC.
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Fig. 21. The output variable fuzzy sets for hybrid FPIDC.

Since the Sugeno has better stability than Mamdani, Sugeno
FIS has been only used in the hybrid FPIDC. Fig. 22 shows
the output power for hybrid FPIDC using PSO and GA and
Fig. 23 shows the optimal BPA. Furthermore, the Absolute
error is shown in Fig. 24. Table V. compares the maximum
and summation error for all controllers. According to this
table, hybrid FPIDC has more consistent output power with
lower error than other controllers. Also, Sugeno FIS and PSO
for PID parameters provide the lowest error. The proposed
controller can increase the life cycle and efficiency of WT. No
BPA control is indicated when the WS is less than the rated
value. As a result, controller performance can be obtained
when transitioning from lower to higher rated speeds as well
as from higher to lower rated speeds. As a result, the absolute
error in each transition is high.
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Fig. 22. Output power for hybrid FPIDC with GA and PSO.
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Fig. 24. Absolute error for hybrid FPIDC for GA and PSO.

TABLE V.
MAXIMUM ERROR AND SUMMATION ERROR
Wind turbine power error
PIDC - .
Summatlon error Max1mum error
GA 1.4212%10° 4.1095 % 10°
PSO 1.3812%10° 4.6654 % 10°
Wind turbine power error
FLC : i
Summation error Maximum error
Mamdani 1.3149 % 10° 2.4022 % 10°
Sugeno 9.9953 % 108 1.9576 % 10°
Sugeno HFPIDC Wlpd turbine power error
Summatlon cIror Max1mum CIror
GA 1.1749 %107 1.2315%10°
PSO 7.0370  10° 1.0390 % 10°

VII. CONCLUSIONS

An optimal hybrid FPIDC based on the PSO algorithm was
proposed in this paper for controlling BPA of WT system. The
proposed controller is compared with an optimal PIDC and
FLC. Two FIS (Mamdani and Sugeno) was used and compared
to find the best FIS used in FLC. PIDC parameters (kp, ki,
and kd) were optimized by using two different optimization
methods (GA and PSO). The results demonstrate that the
system is more stable when using the optimal hybrid FPIDC
based on the Sugeno FIS and optimal PIDC parameters by

using PSO. Finally, the optimal hybrid FPIDC system can
produce a stable output voltage and increase the life cycle of
WT.
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